In order to reduce the CO2 emissions, a disruptive concept in aircraft propulsion has to be considered. As studied in the past years hybrid distributed electric propulsion is a promising option. In this work the feasibility of a new concept aircraft, using this technology, has been studied. Two different energy sources have been used: fuel based engines and batteries. The latters have been chosen because of their flexibility during operations and their promising improvements over next years. The technological horizon considered in this study is the 2035: thus some critical hypotheses have been made for electrical components, airframe and propulsion. Due to the uncertainty associated to these data, sensivity analyses have been performed in order to assess the impact of technologies variations. To evaluate the advantages of the proposed concept, a comparison with a conventional aircraft (EIS 2035), based on evolutions of today's technology (airframe, propulsion, aerodynamics) has been made.
Hybrid-electric aircraft are a potential way to reduce the environmental footprint of aviation. Research aimed at this subject has been pursued over the last decade; nevertheless, at this stage, a full overall aircraft design procedure is still an open issue. This work proposes to enrich the procedure for the conceptual design of hybrid aircraft found in literature through the definition of a multidisciplinary design optimization (MDO) framework aimed at handling design problems for such kinds of aircraft. The MDO technique has been chosen because the hybrid aircraft design problem shows more interaction between disciplines than a conventional configuration, and the classical approach based on multidisciplinary design analysis may neglect relevant features. The procedure has been tested on the case study of a single-aisle aircraft featuring hybrid propulsion with distributed electric ducted fans. The analysis considers three configurations (with 16, 32, and 48 electric motors) compared with a conventional baseline at the same 2035 technological horizon. To demonstrate the framework's capability, these configurations are optimized with respect to fuel and energy consumption. It is shown that the hybrid-electric concept consumes less fuel/energy when it flies on short range due to the partial mission electrification. When one increases the design range, penalties in weight introduced by hybrid propulsion overcome the advantages of electrified mission segment: the range for which hybrid aircraft have the same performance of the reference conventional aircraft is named the "breakdown range." Starting from this range, the concept is no longer advantageous compared to conventional aircraft. Furthermore, a tradeoff between aerodynamic and propulsive efficiency is detected, and the optimal configuration is the one that balances these two effects. Finally, multiobjective optimization is performed to establish a tradeoff between airframe weight and energy consumption.
To face the increasing environmental footprint of commercial aviation, industrial and research efforts have been focusing on exploring unconventional configurations and new propulsion paradigms, mostly based on electric technology. Such explorations require Overall Aircraft Design that has to be performed in an integrated multidisciplinary design environment. Such design environments are often limited to multidisciplinary analysis, adapted for a single aircraft configuration or require an important effort to be mastered. FAST-OAD is a software program developed by ONERA and ISAE-SUPAERO for aircraft sizing analysis and optimization that aims at user friendliness and modularity. It is an aircraft sizing code based on multidisciplinary design optimization techniques and the point mass approach to estimate the required fuel and energy consumption for a given set of TLARs. This paper presents the motivations for moving from the original software program, called FAST, to the open source code FAST-OAD based on OpenMDAO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.