Objectives To assess the minimal ablative margin (MAM) by image fusion of intraprocedural pre-and post-ablation contrastenhanced CT images and to evaluate if it can predict local tumor progression (LTP) independently. Furthermore, to determine a MAM with which a stereotactic radiofrequency ablation (SRFA) can be determined successful and therefore used as an intraprocedural tool to evaluate treatment success. Methods A total of 110 patients (20 women, 90 men; mean age 63.7 ± 10.2) with 176 hepatocellular carcinomas were assessed by retrospective analysis of prospectively collected data. The MAM was determined through image fusion of intraprocedural preand post-ablation images using commercially available rigid imaging registration software. LTP was assessed in contrastenhanced CTs or MR scans at 3-6-month intervals. Results The MAM was the only significant independent predictor of LTP (p = 0.036). For each millimeter increase of the MAM, a 30% reduction of the relative risk for LTP was found (OR = 0.7, 95% CI 0.5-0.98, p = 0.036). No LTP was detected in lesions with a MAM > 5 mm. The overall LTP rate was 9 of 110 (8.2%) on a patient level and 10 of 173 (5.7%) on a lesion level. The median MAM was 3.4 (1.7-6.9) mm. The mean overall follow-up period was 26.0 ± 10.3 months.Conclusions An immediate assessment of the minimal ablative margin (MAM) can be used as an intraprocedural tool to evaluate the treatment success in patients treated with stereotactic RFA. A MAM > 5 mm has to be achieved to consider an ablation as successful. Key Points • An intraoperatively measured minimal ablative margin (MAM) > 5 mm correlates with complete remission.• MAM is the only significant independent predictor of LTP (OR = 0.7, 95% CI 0.5-0.98, p = 0.036) after stereotactic RFA of hepatocellular carcinoma. • Image fusion using commercially available rigid imaging registration software is possible, even though considerably complex.Therefore, improved (semi-)automatic fusion software is highly desirable.
Breast cancer represents a leading cause of death worldwide. Despite the advances in systemic therapies, the prognosis for patients with breast cancer liver metastasis (BCLM) remains poor. Especially in case of failure or cessation of systemic treatments, surgical resection for BCLMs has been considered as the treatment standard despite a lack of robust evidence of benefit. However, due to the extent and location of disease and physical condition, the number of patients with BCLM who are eligible for surgery is limited. Palliative locoregional treatments of liver metastases (LM) include transarterial embolization (TAE), transarterial chemoembolization (TACE), and selective internal radiotherapy (SIRT). Percutaneous thermal ablation methods, such as radiofrequency ablation (RFA) and microwave ablation (MWA), are considered potentially curative local treatment options. They are less invasive, less expensive and have fewer contraindications and complication rates than surgery. Because conventional ultrasound- and computed tomography-guided single-probe thermal ablation is limited by tumor size, multi-probe stereotactic radiofrequency ablation (SRFA) with intraoperative image fusion for immediate, reliable judgment has been developed in order to treat large and multiple tumors within one session. This review focuses on the different minimally invasive local and locoregional treatment options for BCLM and attempts to describe their current and future role in the multidisciplinary treatment setting.
Large colorectal liver metastases can be effectively treated by stereotactic radiofrequency ablation (SRFA). Using SRFA the overall survival is not affected by tumour size. SRFA achieves similar overall and disease-free survival rates as surgical resection. SRFA challenges surgical resection as the first-line treatment for colorectal liver metastases.
Objectives To retrospectively assess the periablational 3D safety margin in patients with colorectal liver metastases (CRLM) referred for stereotactic radiofrequency ablation (RFA) and to evaluate its influence on local treatment success. Methods Forty-five patients (31 males; mean age 64.5 [range 31–87 years]) with 76 CRLM were treated with stereotactic RFA and retrospectively analyzed. Image fusion of pre- and post-interventional contrast-enhanced CT scans using a non-rigid registration software enabled a retrospective assessment of the percentage of predetermined periablational 3D safety margin and CRLM successfully ablated. Periablational safety zones (1–10 mm) and percentage of periablational zone ablated were calculated, analyzed, and compared with subsequent tumor growth to determine an optimal safety margin predictive of local treatment success. Results Mean overall follow-up was 36.1 ± 18.5 months. Nine of 76 CRLMs (11.8%) developed local tumor progression (LTP) with mean time to LTP of 18.3 ± 11.9 months. Overall 1-, 2-, and 3-year cumulative LTP-free survival rates were 98.7%, 90.6%, and 88.6%, respectively. The periablational safety margin assessment proved to be the only independent predictor (p < 0.001) of LTP for all calculated safety margins. The smallest safety margin 100% ablated displaying no LTP was 3 mm, and at least 90% of a 6-mm circumscribed 3D safety margin was required to achieve complete ablation. Conclusions Volumetric assessment of the periablational safety margin can be used as an intraprocedural tool to evaluate local treatment success in patients with CRLM referred to stereotactic RFA. Ablations achieving 100% 3D safety margin of 3 mm and at least 90% 3D safety margin of 6 mm can predict treatment success. Key Points • Volumetric assessment of the periablational safety margin can be used as an intraprocedural tool to evaluate local treatment success following thermal ablation of colorectal liver metastases. • Ablations with 100% 3D periablational safety margin of 3 mm and ablations with at least 90% 3D safety margin of 6 mm can be considered indications of treatment success. • Image fusion of pre- and post-interventional CT scans with the software used in this study is feasible and could represent a useful tool in daily clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.