A new implementation of the vibrational self-consistent field (VSCF) method is presented on the basis of a second quantization formulation. A so-called active terms algorithm is shown to be a significant improvement over a standard implementation reducing the computational effort by one order in the number of degrees of freedom. Various types of screening provide even further reductions in computational scaling and absolute CPU time. VSCF calculations on large polyaromatic hydrocarbon model systems are presented. Further, it is demonstrated that in cases where distant modes are not directly coupled in the Hamiltonian, down to linear scaling of the required CPU time with respect to the number of vibrational modes can be obtained. This is illustrated with calculations on simple model systems with up to 1 million degrees of freedom.
A scheme for automatic derivation and evaluation of the expressions occurring in vibrational coupled cluster theory is introduced. The method is based on a Baker-Campbell-Hausdorff expansion of the similarity transformed Hamiltonian and is general both with respect to the excitation level in the parameter space and the mode coupling level in the Hamiltonian. In addition to deriving general expressions, intermediates that lower the computational scaling are automatically detected. The final equations are then evaluated. Due to the commutator based nature of the algorithm, it is also applicable to the evaluation of quantities needed for response theory. Different aspects of the theory and implementation are illustrated by calculations on model systems. Furthermore, all fundamental excitation energies of ethylene oxide are calculated.
Response theory in the context of vibrational coupled cluster (VCC) theory is introduced and used to obtain vibrational excitation energies. The relation to the vibrational configuration interaction (VCI) approach is described, and the increase in accuracy of VCC response energies relative to VCI energies is discussed theoretically in terms of a perturbational order expansion and demonstrated numerically. To illustrate the theory, a pilot implementation is used to obtain anharmonic vibrational frequencies for fundamental, first overtone and combination excitations of formaldehyde as well as for the fundamental transitions of ethylene.
An efficient implementation of vibrational coupled cluster theory with two-mode excitations and a two-mode Hamiltonian is described. The algorithm is shown to scale cubically with respect to the number of modes which is identical to the scaling of the corresponding vibrational configuration interaction algorithm. This is achieved through the use of special intermediates. The same algorithm can also be used in vibrational Møller-Plesset calculations. To improve performance, screening techniques have been implemented as well. Test calculations on polyaromatic hydrocarbons with up to 264 coupled modes and model systems with up to 1140 modes are used to illustrate the various features of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.