Although the effects of overfishing on species diversity and abundance are well documented, threats to the genetic diversity of marine fish populations have so far been largely neglected. Indeed, there seems to be little cause for concern, as even ''collapsed'' stocks usually consist of several million individuals, whereas population genetics theory suggests that only very small populations suffer significant loss of genetic diversity. On the other hand, in many marine species the genetically effective population size (Ne), which determines the genetic properties of a population, may be orders of magnitude smaller than the census population size (N). Here, microsatellite analyses of a time series of archived scales demonstrated a significant decline in genetic diversity in a New Zealand snapper population during its exploitation history. Effective population sizes estimated both from the decline in heterozygosity and from temporal fluctuations in allele frequency were five orders of magnitude smaller than census population sizes from fishery data. If such low Ne͞N ratios are commonplace in marine species, many exploited marine fish stocks may be in danger of losing genetic variability, potentially resulting in reduced adaptability, population persistence, and productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.