The role of nitric oxide (NO) in the genesis of cerebral malaria is controversial. Most investigators propose that the unfortunate consequence of the high concentrations of NO produced to kill the parasite is the development of cerebral malaria. Here we have tested this high NO bioavailability hypothesis in the setting of experimental cerebral malaria (ECM), but find instead that low NO bioavailability contributes to the genesis of ECM. Specifically, mice deficient in vascular NO synthase showed parasitemia and mortality similar to that observed in control mice. Exogenous NO did not affect parasitemia but provided marked protection against ECM; in fact, mice treated with exogenous NO were clinically indistinguishable from uninfected mice at a stage when control infected mice were moribund. Administration of exogenous NO restored NO-mediated signaling in the brain, decreased proinflammatory biomarkers in the blood, and markedly reduced vascular leak and petechial hemorrhage into the brain. Low NO bioavailability in the vasculature during ECM was caused in part by an increase in NO-scavenging free hemoglobin in the blood, by hypoargininemia, and by low blood and erythrocyte nitrite concentrations. Exogenous NO inactivated NO-scavenging free hemoglobin in the plasma and restored nitrite to concentrations observed in uninfected mice. We therefore conclude that low rather than high NO bioavailability contributes to the genesis of ECM.
Background-Local drug delivery from polymer-coated stents has demonstrated efficacy for preventing in-stent restenosis; however, both the inflammatory effects of polymer coatings and concerns about late outcomes of drug-eluting stent use indicate the need to investigate innovative approaches, such as combining localized gene therapy with stent angioplasty. Thus, we investigated the hypothesis that adenoviral vectors (Ad) could be delivered from the bare-metal surfaces of stents with a synthetic complex for reversible vector binding.
Methods and Results-We
Valorization of food industry waste and plant residues represents an attractive path towards obtaining biodegradable materials and achieving “zero waste” goals. Here, melanin was isolated from watermelon (Citrullus lanatus) seeds and used as a modifier for whey protein concentrate and isolate films (WPC and WPI) at two concentrations (0.1% and 0.5%). The modification with melanin enhanced the ultraviolet (UV) blocking, water vapor barrier, swelling, and mechanical properties of the WPC/WPI films, in addition to affecting the apparent color. The modified WPC/WPI films also exhibited high antioxidant activity, but no cytotoxicity. Overall, the effects were melanin concentration-dependent. Thus, melanin from watermelon seeds can be used as a functional modifier to develop bioactive biopolymer films with good potential to be exploited in food packaging and biomedical applications.
Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50-150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.