BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 µm × 5 µm using the bendable focusing mirrors. The beam is tunable in the energy range 5–25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 µm × 1 µm beam focus and a flux up to 1015 photons s−1 with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.
Invited paper Materials Science & Processing Applied Physics A j. larsson 1,6,✉ a. allen 2 p.h. bucksbaum 5 r.w. falcone 4 a. lindenberg 4 g. naylor 3 t. missalla 1 d.a. reis 5 k. scheidt 3 a. sjögren 1 p. sondhauss 2 m. wulff 3 j.s. wark 2 Picosecond X-ray diffraction studies of laser-excited acoustic phonons in InSb
Successful applications of the vertical-geometry Johann spectrometer (VJS) in advanced plasma spectroscopy are reported. Different experimental configurations are discussed, and a complete quantitative analysis of the spectrometer function including the transfer of the spectral lines is presented. The method for reconstruction of the spectra emitted from extended, quasilinear sources is described; the precision attainable and possible sources of errors are discussed. Due to the combination of high collection efficiency, and spectral and one-dimensional spatial resolution, the instrument is particularly suitable for high-precision measurements of the spectral line profiles and positions in nonhomogeneous plasmas. The examples of experimental results, which are superior to those obtained in earlier measurements, demonstrate the VJS performance and suggest a broad field of possible applications.
An experimental and numerical analysis of the collision of two plasmas produced from laser-exploded Al/Al and Al/Mg pairs of foils is presented. Various imaging and spectroscopic x-ray techniques have been used to diagnose the collision over a broad range of intertarget distances and laser intensities. Ion temperatures in the 10 keV range have been measured from Doppler broadening. Electron temperatures and densities have been deduced from line ratios and interpenetration distances have been determined by the spatial extent of Mg and Al x-ray lines. Eulerian multifluid simulations have been developed and coupled to atomic physics postprocessing. The comparison of the measurements with these simulations shows that interpenetration prevails at large intertarget distances and high laser intensities; kinetic to thermal energy transfer then takes place on a ∼200-μm wide region and during ∼150 ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.