Through the analysis of a series of 25 peptides composed of various portions of the histatin 5 sequence, we have identified P-113, a 12-amino-acid fragment of histatin 5, as the smallest fragment that retains anticandidal activity comparable to that of the parent compound. Amidation of the P-113 C terminus increased the anticandidal activity of P-113 approximately twofold. The three histidine residues could be exchanged for three hydrophobic residues, with the fragment retaining anticandidal activity. However, the change of two or more of the five basic (lysine and arginine) residues to uncharged residues resulted in a substantial loss of anticandidal activity. A synthetic D-amino-acid analogue, P-113D, was as active against Candida albicans as the L-amino-acid form. In vitro MIC tests in low-ionic-strength medium showed that P-113 has potent activity against Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. These results identify P-113 as a potential antimicrobial agent in the treatment of oral candidiasis.
Photodynamic therapy (PDT) has historically been used as a means to treat cancerous tumors but has recently been used to kill bacterial cells through the use of targeted photosensitizers. PDT is a potential adjunct to scaling and root planing in the treatment of periodontal disease. However, the effectiveness of porphyrin derivatives against microorganisms has been limited because some gram-negative bacteria are refractory to photodynamic treatment with these agents. We have designed a porphyrin derivative conjugated to a pentalysine moeity that endows the molecule with activity against gram-positive and gram-negative bacteria. Whereas the porphyrin, chlorin e6, showed in vitro activity against a limited spectrum of bacteria, chlorin e6 conjugated to pentalysine showed in vitro activity against all oral microorganisms tested, including Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum subsp. polymorphum, Actinomyces viscosus, and the streptococci. Potent antimicrobial activity (>5-log-unit reduction in the numbers of CFU per milliliter) was retained in the presence of up to 25% whole sheep blood. The use of potent, selective agents such as this chlorin e6-pentalysine conjugate to more effectively reduce the pathogenic bacteria in the
Metal ions were evaluated as potential antimicrobial agents suitable for local delivery in the oral cavity for the treatment of periodontitis. Silver nitrate, copper chloride, and zinc chloride were tested for antimicrobial activity in in vitro killing assays conducted in phosphate buffered saline with a series of oral bacteria including gram-negative periodontal pathogens and gram-positive streptococci. Copper and zinc salts failed to exhibit strong and consistent activity against periodontal pathogens. In contrast, silver at a concentration of 0.5 microg/mL produced a 3 log10 reduction in colony forming units (CFU)/mL or greater against all periodontal pathogens tested including Porphyromonas gingivalis, Prevotella intermedia, Prevotella denticola, Bacteroides forsythus, Fusobacterium nucleatum vincentii, Campylobacter gracilis, Campylobacter rectus, Eikenella corrodens, and Actinobacillus actinomycetemcomitans. In comparison, substantially higher concentrations of silver nitrate failed to kill oral streptococci. A silver nitrate concentration of 25 microg/mL produced log10 reductions in CFU/mL of 3.5-5 in killing assays performed in human serum against P. gingivalis, demonstrating the ability of silver to retain activity in a biological medium similar to that encountered in vivo in the periodontal pocket. These results identify silver nitrate, an antimicrobial that may possess advantages over traditional antibiotics, as a potential agent for controlled release local delivery in the oral cavity for the treatment of periodontitis.
Mutations in IDH1 are highly prevalent in human glioma. First line treatment is radiotherapy, which many patients often forego to avoid treatment-associated morbidities. The high prevalence of IDH1 mutations in glioma highlights the need for brain-penetrant IDH1 mutant-selective inhibitors as an alternative therapeutic option. Here, we have explored the utility of such an inhibitor in IDH1 mutant patient-derived models to assess the potential therapeutic benefits associated with intracranial 2-HG inhibition. Treatment of mutant IDH1 cell line models led to a decrease in intracellular 2-HG levels both in vitro and in vivo. Interestingly, inhibition of 2-HG production had no effect on in vitro IDH1 mutant glioma cell proliferation. In contrast, IDH1 mutant-selective inhibitors provided considerable survival benefit in vivo. However, even with near complete inhibition of intratumoral 2-HG production, not all mutant glioma models responded to treatment. The results suggest that disruption of 2-HG production with brain-penetrant inhibitors in IDH1 mutant gliomas may have substantial patient benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.