The Ac‐specific ORFa protein, overexpressed in a baculovirus system, specifically binds to several subterminal fragments of Ac. The 11 bp long inverted repeats of the transposable element are not bound by the ORFa protein. Major ORFa protein‐binding sites were delineated on 60 and 70 bp long sequence segments that lie 100 bp inside of the 5′ Ac terminus and 40 bp inside of the 3′ terminus respectively. Within all strongly bound fragments, and particularly in these 60 or 70 bp long segments, the hexamer motif AAACGG is repeated several times in direct or inverted orientation. The ORFa protein binds to synthetic concatemers of this motif, whereas the mutant motif AAAGGG is not complexed. Methylation of the cytosine residues in the AAACGG motif and/or its complementary strand has pronounced effects: whereas one of the two hemimethylated sequences has a higher affinity to the ORFa protein than both unmethylated and holomethylated DNAs, the other hemimethylated DNA is virtually not complexed at all. The native ORFa protein binding sites are more complex than the AAACGG sequence: certain Ac and Ds1 fragments devoid of AAACGG motifs (but containing several similar sequences) are weakly bound by the ORFa protein.
Transcripts of various sizes hybridize to the transposable element Ac of Zea mays in most maize lines. A 3.5‐kb mRNA with an abundance of 1–3 x 107 of the poly(A) RNA, however, is found exclusively in those lines that carry an active Ac. Plants with two Ac elements contain slightly more 3.5‐kb Ac transcript than those with only one Ac. Overlapping cDNA clones spanning most of the message have been isolated and sequenced. The 5′‐end of the transcript was determined by Northern hybridization and S1 mapping. It starts at several sites over a distance of nearly 100 bases, contains an AUG‐free leader 600‐700 nucleotides long, has a long open reading frame encoding 807 amino acids and an untranslated 3′‐sequence of 239 nucleotides. Four introns with a combined length of 654 bases are removed from the primary transcript. Radiosequencing of in vitro translation products shows that translation of the long open reading frame begins at the first AUG, even though it is located in an unfavourable sequence context. The transcript is found in all organs investigated, provided an active Ac is present in the stock.
The Shrunken gene, located on the short arm of chromosome 9 of Zea mays, encodes the enzyme sucrose synthase (EC 2.4.1.13). The gene is known to be expressed in the endosperm of the developing maize kernel and seems to be involved in sucrose breakdown prior to starch synthesis. We have analyzed different tissues of the maize plant for transcripts of the Shrunken gene and have found rather high transcription rates in the etiolated shoot and the primary root of the germinating kernel. If the etiolated seedlings are illuminated, the transcript level drops by about 95% in the greening plant parts (1st and 2nd leaves) which are active in photosynthesis. A very low transcript level is found in mature green leaves where sucrose is formed from products of photosynthesis via a separate pathway. Upon anaerobic stress of the young seedling, the level of Shrunken transcripts increases 10 and 20 times in shoot and root tissue respectively. Apparently anaerobic induction supersedes the negative control that is observed after illumination in the 1st and 2nd leaves. From the experiments outlined here we conclude that the anaerobic protein 87 (ANP87, Hake et al. 1985) is encoded by the Shrunken locus. While the expression of the Shrunken gene varies in different tissues and in response to external stimuli, transcription of the second sucrose synthase (B) gene seems to be irresponsive to anaerobic stress and to be expressed at a similar low level in all of the tissues examined.
The structure of the shrunken gene of Zea mays encoding sucrose synthase (EC 2.4.1.13) was determined by (i) sequencing the transcription unit and ˜1.2 kb of 5′ ‐upstream sequences from a genomic clone, (ii) by sequencing a nearly full length cDNA clone and (iii) by determining the transcription start site by a combination of primer extension experiments with synthetic oligodeoxynucleotide primers and S1 mapping. The sucrose synthase gene is 5.4 kb long, of which 2746 bp are found in the mature mRNA. The gene is interrupted by 15 introns. The first two introns are ˜1 kb and ˜0.5 kb in length, respectively, while the other introns are much smaller. A TATA box is located 30 bp upstream from the transcription start site. Approximately 610 bp upstream of the transcription start site a direct repeat of 16 nucleotides, separated by a 4‐fold repetition of the sequence GGTGG is detected. The 16‐bp sequence has similarities to a sequence repeat found between two promoters of a maize zein gene also expressed in the endosperm tissue. The transposable element Ds in the mutant sh‐m5933 and sh‐m6233 alleles is inserted in the seventh and first intron, respectively. The genomic and cDNA clones were obtained from different maize lines. This allows the determination of polymorphic sites which are frequent in 3rd codon position and absent in 1st and 2nd codon positions. In addition, the 3′ ‐untranslated sequence shows two duplications that may have arisen by the insertion and subsequent excision of transposable elements.
We describe a phenotypic assay designed to detect excision of the maize controlling element Ac from a selectable marker gene, neomycin phosphotransferase II (NPT II). An NPT II gene which expresses kanamycin resistance in tobacco cells, and contains a unique restriction enzyme site in the untranslated leader region, was constructed. Ac, or a defective Ac element (Ac△), was inserted into the leader region of this gene. The transposon insertions inactivated the NPT II gene as determined by transient NPT II expression assays. The three plasmids were inserted into the T DNA of Agrobacterium tumefaciens Ti plasmid vectors, and transferred to tobacco protoplasts. The transformed protoplasts were selected with 100 or 200 µg/ml kanamycin. Protoplasts transformed by the NPT II gene interrupted by Ac formed ˜25% as many calli resistant to 100 or 200 µg/ml kanamycin as protoplasts transformed by the uninterrupted NPT II gene. Protoplasts transformed by the NPT II gene interrupted by Ac△ did not form any calli resistant to 200 µg/ml of kanamycin when transformed under similar conditions. Southern blot hybridization analyses of seven kanamycin‐resistant calli or plants obtained after transformation by the NPT II gene interrupted by Ac revealed that in all cases Ac had excised, restoring the structure of the NPT II gene. This assay is therefore useful to monitor the activity of a transposable element such as Ac and to define the regions of this element involved in transposition activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.