A key component in the operation of a biosonar system is the radiation of sound energy from the sound producing head structures of toothed whales and microbats. The current view involves a fixed transmission aperture by which the beam width can only change via changes in the frequency of radiated clicks. To test that for a porpoise, echolocation clicks were recorded with high angular resolution using a 16 hydrophone array. The beam is narrower than previously reported (DI = 24 dB) and slightly dorso-ventrally compressed (horizontal -3 dB beam width: 13°, vertical -3 dB beam width: 11°). The narrow beam indicates that all smaller toothed whales investigated so far have surprisingly similar beam widths across taxa and habitats. Obtaining high directionality may thus be at least in part an evolutionary factor that led to high centroid frequencies in a group of smaller toothed whales emitting narrow band high frequency clicks. Despite the production of stereotyped narrow band high frequency clicks, changes in the directionality by a few degrees were observed, showing that porpoises can obtain changes in sound radiation.
Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects.
Recordings of narwhal (Monodon monoceros) echolocation signals were made using a linear 16 hydrophone array in the pack ice of Baffin Bay, West Greenland in 2013 at eleven sites. An average -3 dB beam width of 5.0° makes the narwhal click the most directional biosonar signal reported for any species to date. The beam shows a dorsal-ventral asymmetry with a narrower beam above the beam axis. This may be an evolutionary advantage for toothed whales to reduce echoes from the water surface or sea ice surface. Source level measurements show narwhal click intensities of up to 222 dB pp re 1 μPa, with a mean apparent source level of 215 dB pp re 1 μPa. During ascents and descents the narwhals perform scanning in the vertical plane with their sonar beam. This study provides valuable information for reference sonar parameters of narwhals and for the use of acoustic monitoring in the Arctic.
A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes.
SUMMARYRecordings of the echolocation signals of landing big brown bats with a two-dimensional 16-microphone array revealed that the source level reduction of 7dB per halving of distance is superimposed by a variation of up to 12dB within single call groups emitted during the approach. This variation correlates with the wingbeat cycle. The timing of call emission correlates with call group size. First pulses of groups containing many calls are emitted earlier than first calls in groups with fewer calls or single calls. This suggests that the emission of pulse groups follows a fixed motor pattern where the information gained from the preceding pulse group determines how many calls will be emitted in the next group. Single calls and call groups are centred at the middle of the upstroke. Expiration is indicated by call emission. The pause between groups is centred at the middle of the downstroke and indicates inspiration. The hypothesis that the source level variation could be caused by changes in the subglottic pressure due to the contraction of the major flight muscles is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.