Mapping hard-to-access and hazardous parts of forests by terrestrial surveying methods is a challenging task. Remote sensing techniques can provide an alternative solution to such cases. Unmanned aerial vehicles (UAVs) can provide on-demand data and higher flexibility in comparison to other remote sensing techniques. However, traditional georeferencing of imagery acquired by UAVs involves the use of ground control points (GCPs), thus negating the benefits of rapid and efficient mapping in remote areas. The aim of this study was to evaluate the accuracy of RTK/PPK (real-time kinematic, post-processed kinematic) solution used with a UAV to acquire camera positions through post-processed and corrected measurements by global navigation satellite systems (GNSS). To compare this solution with approaches involving GCPs, the accuracies of two GCP setup designs (4 GCPs and 9 GCPs) were evaluated. Additional factors, which can significantly influence accuracies were also introduced and evaluated: type of photogrammetric product (point cloud, orthoimages and DEM) vegetation leaf-off and leaf-on seasonal variation and flight patterns (evaluated individually and as a combination). The most accurate results for both horizontal (X and Y dimensions) and vertical (Z dimension) accuracies were acquired by the UAV RTK/PPK technology with RMSEs of 0.026 m, 0.035 m and 0.082 m, respectively. The PPK horizontal accuracy was significantly higher when compared to the 4GCP and 9GCP georeferencing approach (p < 0.05). The PPK vertical accuracy was significantly higher than 4 GCP approach accuracy, while PPK and 9 GCP approach vertical accuracies did not differ significantly (p = 0.96). Furthermore, the UAV RTK/PPK accuracy was not influenced by vegetation seasonal variation, whereas the GCP georeferencing approaches during the vegetation leaf-off season had lower accuracy. The use of the combined flight pattern resulted in higher horizontal accuracy; the influence on vertical accuracy was insignificant. Overall, the RTK/PPK technology in combination with UAVs is a feasible and appropriately accurate solution for various mapping tasks in forests.
Abstract:In this article we introduce a new method for forest management inventories especially suitable for highly-valued timber where the precise estimation of stem parameters (diameter, form, and tapper) plays the key role for market purposes. The unmanned aerial system (UAS)-based photogrammetry is combined with terrestrial photogrammetry executed by walking inside the stand and the individual tree parameters are estimated. We compare two automatic methods for processing of the point clouds and the delineation of stem circumference at breast height. The error of the diameter estimation was observed to be under 1 cm root mean square error (RMSE) and the height estimation error was 1 m. Apart from the mentioned accuracy, the main advantage of the proposed work is shorter time demand for field measurement; we could complete both inventories of 1 hectare forest stand in less than 2 h of field work.
Global change research institute (czechGlobe), cas, Brno, czech republic; b Department of ecosystem analyses, institute of forest ecosystem research (ifer), Jilove u prahy, czech republic;
Abstract:The potential of close-range photogrammetry (CRP) to compete with terrestrial laser scanning (TLS) to produce dense and accurate point clouds has increased in recent years. The use of CRP for estimating tree diameter at breast height (DBH) has multiple advantages over TLS. For example, point clouds from CRP are similar to TLS, but hardware costs are significantly lower. However, a number of data collection issues need to be clarified before the use of CRP in forested areas is considered effective. In this paper we focused on different CRP data collection methods to estimate DBH. We present seven methods that differ in camera orientation, shooting mode, data collection path, and other important factors. The methods were tested on a research plot comprised of European beeches (Fagus sylvatica L.). The circle-fitting algorithm was used to estimate DBH. Four of the seven methods were capable of producing a dense point cloud. The tree detection rate varied from 49% to 81%. Estimates of DBH produced a root mean square error that varied from 4.41 cm to 5.98 cm. The most accurate method was achieved using a vertical camera orientation, stop-and-go shooting mode, and a path leading around the plot with two diagonal paths through the plot. This method also had the highest rate of tree detection (81%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.