Environmental context.Effective mitigation of algal blooms, and their associated detrimental impacts on flora and fauna, requires an understanding of the factors leading to bloom development, including nutrients, light and hydrodynamics. We investigated a shallow, freshwater lake and demonstrate that there is sufficient bioavailable phosphorus to annually generate a large algal biomass. Extensive, seasonal phosphorus release from sediments is controlled by the interactions of the biogeochemical cycles of nitrogen, carbon, oxygen, iron and sulfur. Abstract.The shallow, polymictic Ornamental Lake in the Royal Botanic Gardens, Melbourne, Australia, has suffered significant blooms of toxic Anabaena then Microcystis species every summer over the last decade. Although the hydrodynamic conditions of the water column are conducive for algal growth, the prolific growth is controlled by the bioavailable phosphorus concentration. Springtime phosphorus fluxes of 0.1–0.2 mmol m–2 day–1 from the sediment contribute to bloom development. These rates are also observed in anoxic sediment core incubations. Diel stratification, combined with high oxygen consumption associated with organic carbon loading, favour P release. Release rates may be amplified by the effects of sulfate reduction on P sorption onto FeIII (oxyhydroxide) surfaces. Sulfate concentrations are at the threshold where methanogenesis is inhibited in anoxic conditions. Effective bloom mitigation will require a >100-fold reduction in P concentrations, which may be achieved through macrophyte planting and inducing greater water flow through the lake system.
Botanic gardens around the world maintain collections of living plants for science, conservation, education, beauty and more. These collections change over time – in scope and content – but the predicted impacts of climate change will require a more strategic approach to the succession of plant species and their landscapes. Royal Botanic Gardens Victoria has recently published a ‘Landscape Succession Strategy’ for its Melbourne Gardens, a spectacular botanical landscape established in 1846. The strategy recognizes that with 1.6 million visitors each year, responsibility for a heritage-listed landscape and the need to care for a collection of 8500 plant species of conservation and scientific importance, planting and planning must take into account anticipated changes to rainfall and temperature. The trees we plant today must be suitable for the climate of the twenty-second century. Specifically, the Strategy sets out the steps needed over the next twenty years to transition the botanic garden to one resilient to the climate modelled for 2090. The document includes a range of practical measures and achievable (and at times somewhat aspirational) targets. Climate analogues will be used to identify places in Australia and elsewhere with conditions today similar to those predicted for Melbourne in 2090, to help select new species for the collection. Modelling of the natural and cultivated distribution of species will be used to help select suitable growth forms to replace existing species of high value or interest. Improved understanding of temperature gradients within the botanic garden, water holding capacity of soils and plant water use behaviour is already resulting in better targeted planting and irrigation. The goal is to retain a similar diversity of species but transition the collection so that by 2036 at least 75% of the species are suitable for the climate in 2090. Over the next few years we hope to provide 100% of irrigation water from sustainable water sources, and infrastructure will be improved to adapt to predicted higher temperatures and more climatic extremes. At all times there will be a strong focus on assisting the broader community in their response to climate change.
The maintenance and expansion of urban forests is a major challenge in periods of low rainfall and restricted availability of appropriate-quality water sources for trees. The recent drought in eastern Australia has highlighted the need for innovation and new approaches to ensure tree health is preserved. Responses adopted by the Royal Botanic Gardens Melbourne and others have involved investigations into species more suited to changing climate conditions, assessment of tree and landscape water demand, understanding the hydrology of the site, effective irrigation delivery, management of the soil reservoir to optimize harvested stormwater, and provide soil water reserves for future high demand summer periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.