Previous research on animations of soap bubbles, films, and foams largely focuses on the motion and geometric shape of the bubble surface. These works neglect the evolution of the bubble's thickness, which is normally responsible for visual phenomena like surface vortices, Newton's interference patterns, capillary waves, and deformation-dependent rupturing of films in a foam. In this paper, we model these natural phenomena by introducing the film thickness as a reduced degree of freedom in the Navier-Stokes equations and deriving their equations of motion. We discretize the equations on a non-manifold triangle mesh surface and couple it to an existing bubble solver. In doing so, we also introduce an incompressible fluid solver for 2.5D films and a novel advection algorithm for convecting fields across non-manifold surface junctions. Our simulations enhance state-of-the-art bubble solvers with additional effects caused by convection, rippling, draining, and evaporation of the thin film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.