Phosphonium ionic liquids (PhosILs), most notably tetradecyl(trihexyl)phosphonium decanoate (PhosIL-C(9)H(1)9COO), are solvents for bases such as Grignard reagents, isocyanides, Wittig reagents (phosphoranes), and N-heterocyclic carbenes (NHCs). The stability of the organometallic species in PhosIL solution is anion dependent. Small bases, such as hydroxide, react with the phosphonium ions and promote C-H exchange as suggested by deuterium-labeling studies. A method to dry and purify the ionic liquids is described and this step is important for the successful use of basic reagents in PhosIL. NHCs have been generated in PhosIL, and these persistent solutions catalyze organic transformations such as the benzoin condensation and the Kumada-Corriu cross-coupling reaction. Phosphoranes were generated in PhosIL, and their reactivity with various organic reagents was also tested. Inter-ion contacts involving tetraalkylphosphonium ions have been assessed, and the crystal structure of [(n-C(4)H(90)(4)P][CH(3)CO(2).CH(3)CO(2)H] has been determined to aid the discussion. Decomposition of organometallic compounds may also proceed through electron-transfer processes that, inter alia, may lead to decomposition of the IL, and hence the electrochemistry of some representative phosphonium and imidazolium ions has been studied. A radical derived from the electrochemical reduction of an imidazolium ion has been characterized by electron paramagnetic resonance spectroscopy.
Dehydrocoupling and hydrosilation reactions of the Si−H bonds in poly(phenylsilane) catalyzed by B(C 6 F 5 ) 3 allow the preparation of new polymers containing both Si−H and Si−SR side chains. This postpolymerization modification takes place without any observable competing Si−Si bond cleavage, unlike other Lewis acid, transition-metal, or radical mediated routes. The −SR-functionalized polymers have been characterized by GPC, IR, UV−vis, elemental analysis, and 1 H, 13 C, and 29 Si NMR.
A series of tin(II) amido complexes possessing m-terphenyl carboxylate ligands have been prepared. These complexes, namely [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Ph(3))](2), [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(3)Mes(2))](2), and [(Me(3)Si)(2)NSn(mu-O(2)CC(6)H(2)Mes(2)Me)](2) [Mes = 2,4,6-trimethylphenyl], are the first structurally characterized examples of tin(II) carboxylate complexes exhibiting discrete Sn(2)O(4)C(2) heterocyclic cores. Initial reactivity studies led to the isolation of a 1,3-diaza-2,4-distannacyclobutanediyl, [(Mes(2)C(6)H(3)CO(2))Sn(mu-NSiMe(3))](2). This molecule possesses a Sn(2)N(2) heterocyclic core and it was crystallised as both the CH(2)Cl(2) and Et(2)O solvates. Although the tin atoms in this molecule have a formal oxidation state of 3+, preliminary computational studies on this molecule suggest that it is best described as a ground state singlet. Finally, the X-ray crystal structure of (CH(2)Cl)(Cl)Sn[N(SiMe(3))(2)](2), the product of oxidative addition of CH(2)Cl(2) to Sn[N(SiMe(3))(2)](2), is also presented herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.