Sound-and-orientation recording tags (DTAGs) were used to study 10 beaked whales of two poorly known species, Ziphius cavirostris (Zc) and Mesoplodon densirostris (Md). Acoustic behaviour in the deep foraging dives performed by both species (Zc: 28 dives by seven individuals; Md: 16 dives by three individuals) shows that they hunt by echolocation in deep water between 222 and 1885·m, attempting to capture about 30 prey/dive. This food source is so deep that the average foraging dives were deeper (Zc: 1070·m; Md: 835·m) and longer (Zc: 58·min; Md: 47·min) than reported for any other air-breathing species. A series of shallower dives, containing no indications of foraging, followed most deep foraging dives. The average interval between deep foraging dives was 63·min for Zc and 92·min for Md. This long an interval may be required for beaked whales to recover from an oxygen debt accrued in the deep foraging dives, which last about twice the estimated aerobic dive limit. Recent reports of gas emboli in beaked whales stranded during naval sonar exercises have led to the hypothesis that their deep-diving may make them especially vulnerable to decompression. Using current models of breath-hold diving, we infer that their natural diving behaviour is inconsistent with known problems of acute nitrogen supersaturation and embolism. If the assumptions of these models are correct for beaked whales, then possible decompression problems are more likely to result from an abnormal behavioural response to sonar.
Beaked whales (Cetacea: Ziphiidea) of the genera Ziphius and Mesoplodon are so difficult to study that they are mostly known from strandings. How these elusive toothed whales use and react to sound is of concern because they mass strand during naval sonar exercises. A new non-invasive acoustic ording tag was attached to four beaked whales(two Mesoplodon densirostris and two Ziphius cavirostris) and recorded high-frequency clicks during deep dives. The tagged whales only clicked at depths below 200 m, down to a maximum depth of 1267 m. Both species produced a large number of short, directional, ultrasonic clicks with significant energy below 20 kHz. The tags recorded echoes from prey items; to our knowledge, a first for any animal echolocating in the wild. As far as we are aware, these echoes provide the first direct evidence on how free-ranging toothed whales use echolocation in foraging. The strength of these echoes suggests that the source level of Mesoplodon clicks is in the range of 200-220 dB re 1 microPa at 1 m. This paper presents conclusive data on the normal vocalizations of these beaked whale species, which may enable acoustic monitoring to mitigate exposure to sounds intense enough to harm them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.