Control systems for converter-controlled rail vehicles are orders of magnitude more complex than controllers for previous generations of vehicles. While the dynamic behavior of previous generations of vehicles was to a large extent determined by its power components alone, an important part of the dynamics of modern vehicles is shaped by real-time software, distributed computing and intercontroller communication. To ensure proper operation of the vehicle on track, an integration test of the vehicle control system is performed before initial roll-out. In order to achieve a maximum test depth and to minimize risk and cost, this test is achieved by connecting the original vehicle control system to a real-time dynamic vehicle simulator in closed-loop operation. The present paper describes concept, evaluation, and operation of a digital hardware-in-the-loop simulator for testing control-relevant parts of the vehicle. Particular emphasis is put on the hybrid nature of the underlying simulation problem and its inherent causality variations due to the combination of discrete switching effects, e.g., in diodes and controlled converters, with continuous system parts, e.g., differential equations for currents or mechanical system parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.