Mechanical properties of polymer membranes (strength, hardness and elasticity) are very important parameters for the application performance, e.g. water purification. We study the tensile and surface mechanical properties of hollow fiber and flat sheets mat membranes based on PES and PVDF polymers. Tensile test, nanoindentation and atom force microscopy are used for characterization at macro and nanoscale. Mechanical properties are correlated with pore structure of membranes. The reinforced PVDF HF hollow fiber membranes show 30-fold higher stiffness and 3-fold higher hardness compared to non-reinforced PES HF. Surface mechanical properties of flat sheet membranes are strongly improved by decreasing the pore size. The smoothest surface with 100–200 nm roughness has the best surface mechanical performance obtained by nanoindentation.
This work presents a selective overview of natural fogs in terms of fog types, forms and states of occurrence, physical, micro-physical, chemical and dynamic properties, basic characterizing parameters, etc. In focus are related achievements and contributions reported mainly during the last decade and a half, as a result of both laboratory studies and field observations. Processes of homogeneous and heterogeneous nucleation are analyzed in the aspects of condensation, nuclei diversity and specifics, as related to the activation, growth and deposition of fog droplets. The effect is highlighted of the water vapor's partial pressure on the surface tension of the liquid water-air interface and the freezing point of the water droplets. Some problems and aspects of fog modeling, parameterization, and forecasting are outlined and discussed on the examples of newly developed relevant 1D/3D theoretical models. Important issues of fog impacts on the air quality, ecosystems, water basins, societal life, and human health are also addressed and discussed, particularly in cases of anthropogenically modified (chemical, radioactive, etc.) fogs. In view of reducing the possible negative effects of fogs, conclusions are drawn concerning the new demands and challenges to fog characterization imposed by the changing natural and social environment and the needs for new data on and approaches to more adequate observations of fog-related events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.