Water is among the top five global risks in terms of impacts translated through socio-economic and environmental challenges, influencing people's wellbeing. The situation is grim in water-scarce countries, which need to think and act beyond conventional water resources and tap unconventional water supplies to narrow the gap between water demand and supply. Among unconventional water resources, water embedded in fog is increasingly seen as a source of potable water in dry areas where fog is intense and prevalent. Although a low maintenance option and a green technology to supply freshwater, the potential to collect water from air through fog harvesting is by far under-explored. Based on the comprehensive analysis of fog water collection's research history since 1980, this study reveals that recent years have witnessed a sharp increase in research related to technological developments in fog collection systems. Also, there is an increased focus on associated policy and institutional aspects, economics, environmental dimensions, capacity building, community participation, and gender mainstreaming. In addition to research, fog water collection practice has also increased over time with emerging examples worldwide, notably from Canary Islands, Chile, Colombia, Eritrea, Ethiopia, Guatemala, Israel, Morocco, Namibia, Oman, Peru, and South Africa. The functional systems of fog water collection demonstrate community engagement, women empowerment, enhanced capacity and training, and active participation of local institutions as the key drivers for effective fog collection systems to provide a sustainable supply of freshwater to the associated communities.
Fog harvesting techniques for water collection have been implemented successfully worldwide for several decades. However, at locations with high wind speeds, traditional installations require high maintenance efforts endangering the sustainability of projects. Furthermore, the efficiency of fog collection meshes and the water quality in the field are key questions for the implementation of large-scale facilities. This study presents a novel, durable fog collector design and investigates the yield (fog + rain) and inorganic water quality of different potential collection meshes at a test site in Morocco. The pilot facility proved very reliable with only minimal maintenance required. Rankings of the efficiency of different fog nets were set up, with monofilaments and three-dimensional structures tending to show higher yields than woven fabrics such as the traditional 'Raschel' mesh. However, differences from fog event to fog event could be identified. Water quality was better than that of local wells and met WHO guidelines, except for the 'first flush' just after the start of fog events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.