A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T(2)-biotin.dT-T(2) loop. The third base was a biotinylated uracil (U(B)) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3' dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3' end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5'-FITC, or radiolabeled with [gamma-(33)P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45 degrees C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin-target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms. Our results reveal a pronounced enthalpy-entropy compensation for 7-amino actinomycin D binding to this family of oligonucleotides and suggest that the DNA sequences flanking the primary binding site can strongly influence ligand recognition of specific sites on target DNA molecules.
Effects of different end sequences on stability, circular dichroism spectra (CD), and enzyme binding properties were investigated for six 22-base pair, non-self-complementary duplex DNA oligomers. The center sequences of these deoxyoligonucleotides have 8-14 base pairs in common and are flanked on both sides by sequences differing in context and A-T content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming a two-state melting transition. Melting free energies (20 degrees C) of the six DNAs evaluated from DSC experiments ranged from -18.7 to -32.7 kcal/mol. van't Hoff estimates of the free energies ranged from -18.5 to -48.0 kcal/mol. With either method, the trends in free energy as a function of sequence were identical. Equilibrium binding by BamHI restriction endonuclease to the 22-base pair DNAs was also investigated. The central eight base pairs of all six molecules, 5'-A-GGATCC-A-3', contained a BamHI recognition sequence bounded by A-T base pairs. Magnesium free binding assays were performed by titering BamHI against a constant concentration of each of the deoxyoligonucleotide substrates and analyzing reaction products by gel retardation. Binding isotherms of the total amount of bound DNA versus protein concentration were constructed which provided semiquantitative estimates of the equilibrium dissociation constants for dissociation of BamHI from the six DNA oligomers. Dissociation constants ranged from 0.5 x 10(-)(9) to 12.0 x 10(-)(9) M with corresponding binding free energies of -12.5 to -10.6 (+/-0. 1) kcal/mol. An inverse relationship is found when binding and stability are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.