Abstract-Abnormal bearer session release (i.e. bearer session drop) in cellular telecommunication networks may seriously impact the quality of experience of mobile users. The latest mobile technologies enable high granularity real-time reporting of all conditions of individual sessions, which gives rise to use data analytics methods to process and monetize this data for network optimization. One such example for analytics is Machine Learning (ML) to predict session drops well before the end of session. In this paper a novel ML method is presented that is able to predict session drops with higher accuracy than using traditional models.The method is applied and tested on live LTE data offline. The high accuracy predictor can be part of a SON function in order to eliminate the session drops or mitigate their effects.
Quantum annealing offers an appealing route to handle large-scale optimization problems. Existing Quantum Annealing processing units are readily available via cloud platform access for solving Quadratic Unconstrained Binary Optimization (QUBO) problems. In particular, the novel D-Wave Advantage device has been recently released. Its performance is expected to improve upon the previous stateof-the-art D-Wave 2000Q annealer, due to higher number of qubits and the Pegasus topology. Here, we present a comparative study via an ensemble of Maximum Likelihood (ML) Channel Decoder problems for MIMO scenarios in Centralized Radio Access Network (C-RAN) architectures. The main challenge for exact optimization of ML decoders with ever-increasing demand for higher data rates is the exponential increase of the solution space with problem sizes. Since current 5G solutions mainly use approximate methodologies, Kim et al. leveraged Quantum Annealing for large MIMO problems with Phase Shift Keying and Quadrature Amplitude Modulation scenarios. Here, we extend their work and analyze experiments for more complex modulations and larger MIMO antenna array sizes. By implementing the extended QUBO formulae on the novel annealer architecture, we uncover the limits of state-of-the-art quantum optimization for the massive MIMO ML decoder. We report on the improvements and discuss the uncovered limiting factors learned from the 64-QAM extension. We include the enhanced evaluation of raw annealer sampling via implementation of post-processing methods in the comparative analysis between D-Wave 2000Q and D-Wave Advantage system.
Traffic modeling of communication networks such as Internet has become a very important field of research. A number of interesting phenomena are found in measurements and traffic simulations. One of them is the propagation of congestion waves opposite to the main packet flow direction. The purpose of this paper is to model and analyze packet congestion on a given route and to give a possible explanation to this phenomenon.
Quantum Annealing provides a heuristic method leveraging quantum mechanics for solving Quadratic Unconstrained Binary Optimization problems. Existing Quantum Annealing processing units are readily available via cloud platform access for a wide range of use cases. In particular, a novel device, the D-Wave Advantage has been recently released. In this paper, we study the applicability of Maximum Likelihood (ML) Channel Decoder problems for MIMO scenarios in centralized RAN. The main challenge for exact optimization of ML decoders with ever-increasing demand for higher data rates is the exponential increase of the solution space with problem sizes. Since current 5G solutions can only use approximate methodologies, Kim et al. [1] leveraged Quantum Annealing for large MIMO problems with phase shift keying and quadrature amplitude modulation scenarios. Here, we extend upon their work and present embedding limits for both more complex modulation and higher receiver / transmitter numbers using the Pegasus P16 topology of the D-Wave Advantage system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.