Purpose: MET, the receptor for hepatocyte growth factor (HGF), has been implicated in driving tumor proliferation and metastasis. High MET expression is correlated with poor prognosis in multiple cancers. Activation of MET can be induced either by HGF-independent mechanisms such as gene amplification, specific genetic mutations, and transcriptional upregulation or by HGF-dependent autocrine or paracrine mechanisms.Experimental Design/Results: Here, we report on LY2875358, a novel humanized bivalent anti-MET antibody that has high neutralization and internalization activities, resulting in inhibition of both HGFdependent and HGF-independent MET pathway activation and tumor growth. In contrast to other bivalent MET antibodies, LY2875358 exhibits no functional agonist activity and does not stimulate biologic activities such as cell proliferation, scattering, invasion, tubulogenesis, or apoptosis protection in various HGFresponsive cells and no evidence of inducing proliferation in vivo in a monkey toxicity study. LY2875358 blocks HGF binding to MET and HGF-induced MET phosphorylation and cell proliferation. In contrast to the humanized one-armed 5D5 anti-MET antibody, LY2875358 induces internalization and degradation of MET that inhibits cell proliferation and tumor growth in models where MET is constitutively activated. Moreover, LY2875358 has potent antitumor activity in both HGF-dependent and HGF-independent (METamplified) xenograft tumor models. Together, these findings indicate that the mechanism of action of LY2875358 is different from that of the one-armed MET antibody.Conclusions: LY2875358 may provide a promising therapeutic strategy for patients whose tumors are driven by both HGF-dependent and HGF-independent MET activation. LY2875358 is currently being investigated in multiple clinical studies. Clin Cancer Res; 20(23); 6059-70. Ó2014 AACR.
LY-CoV1404 is a highly potent, neutralizing, SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody identified from a convalescent COVID-19 patient approximately 60 days after symptom onset. In pseudovirus studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.427/B.1.429, P.1, and B.1.526 and binds to these variants in the presence of their underlying RBD mutations (which include K417N, L452R, E484K, and N501Y). LY-CoV1404 also neutralizes authentic SARS-CoV-2 in two different assays against multiple isolates. The RBD positions comprising the LY-CoV1404 epitope are highly conserved, with the exception of N439 and N501; notably the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of variant binding, potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 is one in a panel of well-characterized, clinically developable antibodies that could be deployed rapidly to address current and emerging variants. New variant-resistant treatments such as LY-CoV1404 are desperately needed, given that some of the existing therapeutic antibodies are less effective or ineffective against certain variants and the impact of variants on vaccine efficacy is still poorly understood.
Genetic and biochemical evidence has established that the E2 open reading frame (ORF) of bovine papillomavirus type 1 encodes at least two different site-specific DNA-binding proteins, one which activates and the other which represses expression from a viral promoter (P. F. Lambert, B. A. Spalholz, and P. M. Howley, Cell 50:69-78, 1987). We have obtained data which show that a second form of the repressor gene is expressed in transformed cells harboring stable viral plasmids. The structural details of this gene have been discerned by cDNA cloning, by RNase protection, and by primer extension analysis of in vivo RNA. Moreover, data from in vitro transcription experiments support the notion that this form of the E2 repressor is expressed from a novel viral promoter and that a small exon from another ORF is linked to an active repressor domain in E2. Thus, two different forms of the repressor are expressed from different promoters and might be independently regulated either in the cell cycle or in different tissue types. We show by functional in vivo assays utilizing a cDNA vector encoding this gene that the transacting factor has in vivo activities similar to those of the known repressor. Our screen of a cDNA library for cDNA clones representing bovine papillomavirus transcripts has also revealed a number of other novel structures defining new donor and acceptor RNA-processing sites. Notably, clones which conceptually can be translated to yield an E7 protein, the viral M gene, and the entire E2 ORF have been characterized. Finally, truncated versions of putative E8 cDNAs were also obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.