Cyber-attacks are becoming more sophisticated and thereby presenting increasing challenges in accurately detecting intrusions. Failure to prevent the intrusions could degrade the credibility of security services, e.g. data confidentiality, integrity, and availability. Numerous intrusion detection methods have been proposed in the literature to tackle computer security threats, which can be broadly classified into Signature-based Intrusion Detection Systems (SIDS) and Anomaly-based Intrusion Detection Systems (AIDS). This survey paper presents a taxonomy of contemporary IDS, a comprehensive review of notable recent works, and an overview of the datasets commonly used for evaluation purposes. It also presents evasion techniques used by attackers to avoid detection and discusses future research challenges to counter such techniques so as to make computer systems more secure.
Sequential decision-making problems with multiple objectives arise naturally in practice and pose unique challenges for research in decision-theoretic planning and learning, which has largely focused on single-objective settings. This article surveys algorithms designed for sequential decision-making problems with multiple objectives. Though there is a growing body of literature on this subject, little of it makes explicit under what circumstances special methods are needed to solve multi-objective problems. Therefore, we identify three distinct scenarios in which converting such a problem to a single-objective one is impossible, infeasible, or undesirable. Furthermore, we propose a taxonomy that classifies multi-objective methods according to the applicable scenario, the nature of the scalarization function (which projects multi-objective values to scalar ones), and the type of policies considered. We show how these factors determine the nature of an optimal solution, which can be a single policy, a convex hull, or a Pareto front. Using this taxonomy, we survey the literature on multi-objective methods for planning and learning. Finally, we discuss key applications of such methods and outline opportunities for future work
While a number of algorithms for multiobjective reinforcement learning have been proposed, and a small number of applications developed, there has been very little rigorous empirical evaluation of the performance and limitations of these algorithms. This paper proposes standard methods for such empirical evaluation, to act as a foundation for future comparative studies. Two classes of multiobjective reinforcement learning algorithms are identified, and appropriate evaluation metrics and methodologies are proposed for each class. A suite of benchmark problems with known Pareto fronts is described, and future extensions and implementations of this benchmark suite are discussed. The utility of the proposed evaluation methods are demonstrated via an empirical comparison of two example learning algorithms.
Cyberttacks are becoming increasingly sophisticated, necessitating the efficient intrusion detection mechanisms to monitor computer resources and generate reports on anomalous or suspicious activities. Many Intrusion Detection Systems (IDSs) use a single classifier for identifying intrusions. Single classifier IDSs are unable to achieve high accuracy and low false alarm rates due to polymorphic, metamorphic, and zero-day behaviors of malware. In this paper, a Hybrid IDS (HIDS) is proposed by combining the C5 decision tree classifier and One Class Support Vector Machine (OC-SVM). HIDS combines the strengths of SIDS) and Anomaly-based Intrusion Detection System (AIDS). The SIDS was developed based on the C5.0 Decision tree classifier and AIDS was developed based on the one-class Support Vector Machine (SVM). This framework aims to identify both the well-known intrusions and zero-day attacks with high detection accuracy and low false-alarm rates. The proposed HIDS is evaluated using the benchmark datasets, namely, Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) and Australian Defence Force Academy (ADFA) datasets. Studies show that the performance of HIDS is enhanced, compared to SIDS and AIDS in terms of detection rate and low false-alarm rates.
The Internet of Things (IoT) has been rapidly evolving towards making a greater impact on everyday life to large industrial systems. Unfortunately, this has attracted the attention of cybercriminals who made IoT a target of malicious activities, opening the door to a possible attack to the end nodes. Due to the large number and diverse types of IoT devices, it is a challenging task to protect the IoT infrastructure using a traditional intrusion detection system. To protect IoT devices, a novel ensemble Hybrid Intrusion Detection System (HIDS) is proposed by combining a C5 classifier and One Class Support Vector Machine classifier. HIDS combines the advantages of Signature Intrusion Detection System (SIDS) and Anomaly-based Intrusion Detection System (AIDS). The aim of this framework is to detect both the well-known intrusions and zero-day attacks with high detection accuracy and low false-alarm rates. The proposed HIDS is evaluated using the Bot-IoT dataset, which includes legitimate IoT network traffic and several types of attacks. Experiments show that the proposed hybrid IDS provide higher detection rate and lower false positive rate compared to the SIDS and AIDS techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.