An integrated physicochemical and biological technique for NO(x) removal from flue gas, the so-called BioDeNO(x) process, combines the principles of wet absorption of NO in an aqueous Fe(II)EDTA(2-) solution with biological reduction of the sorbed NO in a bioreactor. The biological reduction of NO to di-nitrogen gas (N(2)) takes place under thermophilic conditions (55 degrees C). This study demonstrates the technical feasibility of this BioDeNO(x) concept in a bench-scale installation with a continuous flue gas flow of 650 l.h(-1) (70-500 ppm NO; 0.8-3.3% O(2)). Stable NO removal with an efficiency of at least 70% was obtained in case the artificial flue gas contained 300 ppm NO and 1% O(2) when the bioreactor was inoculated with a denitrifying sludge. An increase of the O(2) concentration of only 0.3% resulted in a rapid elevation of the redox potential (ORP) in the bioreactor, accompanied by a drastic decline of the NO removal efficiency. This was not due to a limitation or inhibition of the NO reduction, but to a limited biological iron reduction capacity. The latter leads to a depletion of the NO absorption capacity of the scrubber liquor, and thus to a poor NO removal efficiency. Bio-augmentation of the reactor mixed liquor with an anaerobic granular sludge with a high Fe(III) reduction capacity successfully improved the bioreactor efficiency and enabled to treat a flue gas containing at least 3.3% O(2) and 500 ppm NO with an NO removal efficiency of over 80%. The ORP in the bioreactor was found to be a proper parameter for the control of the ethanol supply, needed as electron donor for the biological regeneration process. The NO removal efficiency as well as the Fe(III)EDTA(-) reduction rate were found to decline at ORP values higher than -140 mV (pH 7.0). For stable BioDeNO(x) operation, the supply of electron donor (ethanol) can be used to control the ORP below that critical value.
Reduction of EDTA-chelated Fe(III) is one of the core processes in the BioDeNOx process, a chemically enhanced technique for biological NOx removal from industrial flue gases. The capacity of Escherichia coli, three mixed cultures from full scale methanogenic granular sludge reactors, one denitrifying sludge, and a BioDeNOx sludge to reduce Fe(III)EDTA- (25 mM) was determined at 37 and 55 degrees C using batch experiments. Addition of catalytic amounts of sulfide greatly accelerated Fe(III)EDTA- reduction, indicating that biological Fe(III)EDTA- reduction is not a direct, enzymatic conversion but an indirect reduction with involvement of an electron-mediating compound, presumably polysulfides. It is suggested that not thermophilic dissimilatory iron-reducing bacteria but reducers of elemental sulfur or polysulfides are primarily involved in the reduction of EDTA-chelated Fe(III) in BioDeNOx reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.