We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal or dendritic tree, its actions of elongation, branching and turning are described in a stochastic, phenomenological manner. In this way, neurons with realistic axonal and dendritic morphologies, including neurite curvature, can be generated. Synapses are formed as neurons grow out and axonal and dendritic branches come in close proximity of each other. NETMORPH is a flexible tool that can be applied to a wide variety of research questions regarding morphology and connectivity. Research applications include studying the complex relationship between neuronal morphology and global patterns of synaptic connectivity. Possible future developments of NETMORPH are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.