Direct perfusion of 3D tissue engineered constructs is known to enhance osteogenesis, which can be partly attributed to enhanced nutrient and waste transport. In addition flow mediated shear stresses are known to upregulate osteogenic differentiation and mineralization. A quantification of the hydrodynamic environment is therefore crucial to interpret and compare results of in vitro bioreactor experiments. This study aims to deal with the pitfalls of numerical model preparation of highly complex 3D bone scaffold structures and aims to provide more accurate wall shear stress (WSS) estimates. microCT imaging techniques were used to reconstruct the geometry of both a titanium (Ti) and a hydroxyapatite scaffold, starting from 430 images with a resolution of 8 microm. To tackle the tradeoff between model size and mesh resolution we selected two concentric regions of interest (cubes with a volume of 1 and 3.375 mm(3), respectively) for both scaffolds. A flow guidance in front of the real inlet surface of the scaffold was designed to mimic realistic inlet conditions. With a flow rate of 0.04 mL/min perfused through a 5 mm diameter scaffold at an inlet velocity of 33.95 microm/s we obtained average WSSs of 1.10 and 1.46 mPa for the 1 mm(3) and the 3.375 mm(3) model of the hydroxyapatite scaffold compared to 1.40 and 1.95 mPa for the 1 mm(3) model and the 3.375 mm(3) model of the Ti scaffold, showing the important influence of the scaffold micro-architecture heterogeneity and the proximity of boundaries. To assess that influence we selected cubic portions, of which the WSS data were analyzed, with the same size and the same location within both 1 and 3.375 mm(3) cubic models. Varying the size of the inner portions simultaneously in both model selections gives a quantification of the sensitivity to boundary neighborhood. This methodology allows to get more insight in the complex concept of tissue engineering and will likely help to understand and eventually improve the fluid-mechanical aspects.
The numerical simulation of Bileaflet Mechanical Heart Valves (BMHVs) has gained strong interest in the last years, as a design and optimization tool. In this paper, a strong coupling algorithm for the partitioned fluid-structure interaction (FSI) simulation of a BMHV is presented. The convergence of the coupling iterations between the flow solver and the leaflet motion solver is accelerated by using the Jacobian with the derivatives of the pressure and viscous moments acting on the leaflets with respect to the leaflet accelerations. This Jacobian is numerically calculated from the coupling iterations. An error analysis is performed to derive a criterion for the selection of useable coupling iterations. The algorithm is successfully tested for two 3D cases of a BMHV and a comparison is made with existing coupling schemes. It is observed that the developed coupling scheme outperforms these existing schemes in needed coupling iterations per time step and CPU time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.