We present a novel radio interference based sensor localization method for wireless sensor networks. The technique relies on a pair of nodes emitting radio waves simultaneously at slightly different frequencies. The carrier frequency of the composite signal is between the two frequencies, but has a very low frequency envelope. Neighboring nodes can measure the energy of the envelope signal as the signal strength. The relative phase offset of this signal measured at two receivers is a function of the distances between the four nodes involved and the carrier frequency. By making multiple measurements in an at least 8-node network, it is possible to reconstruct the relative location of the nodes in 3D. Our prototype implementation on the MICA2 platform yields an average localization error as small as 3 cm and a range of up to 160 meters. In addition to this high precision and long range, the other main advantage of the Radio Interferometric Positioning System (RIPS) is the fact that it does not require any sensors other than the radio used for wireless communication.
An ad-hoc wireless sensor network-based system is presented that detects and accurately locates shooters even in urban environments. The localization accuracy of the system in open terrain is competitive with that of existing centralized countersniper systems. However, the presented sensor network-based solution surpasses the traditional approach because it can mitigate acoustic multipath effects prevalent in urban areas and it can also resolve multiple simultaneous shots. These unique characteristics of the system are made possible by employing novel sensor fusion techniques that utilize the spatial and temporal diversity of multiple detections. In this article, in addition to the overall system architecture, the middleware services and the unique sensor fusion algorithms are described. An analysis of the experimental data gathered during field trials at US military facilities is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.