In this study we analysed ETS sequence data of 164 accessions belonging to 31 taxa of Salicornia, a wide‐spread, hygrohalophytic genus of succulent, annual herbs of Chenopodiaceae subfam. Salicornioideae, to investigate phylogenetic and biogeographical patterns and hypothesise about the processes that shaped them Furthermore, our aim was to understand the reasons for the notorious taxonomic difficulties in Salicornia. Salicornia probably originated during the Miocene somewhere between the Mediterranean and Central Asia from within the perennial Sarcocornia and started to diversify during Late Pliocene/Early Pleistocene. The climatic deterioration and landscape‐evolution caused by orogenetic processes probably favoured the evolution and initial diversification of this annual, strongly inbreeding lineage from the perennial Sarcocornia that shows only very limited frost tolerance. The further diversification of Salicornia was promoted by at least five intercontinental dispersal events (2× to South Africa, at least 3× to North America) and at least two independent polyploidization events resulting in rapidly expanding tetraploid lineages, both of which are able to grow in lower belts of the saltmarshes than their diploid relatives. The diploid lineages of Salicornia also show rapid and effective range expansion resulting in both widespread genotypes and multiple genotypes in a given area. Reproductive isolation through geographical isolation after dispersal, inbreeding, and comparatively young age might be responsible for the large number of only weakly differentiated lineages. The sequence data show that the taxonomic confusion in Salicornia has two major reasons: (1) in the absence of a global revision and the presence of high phenotypic plasticity, the same widespread genotypes having been given different names in different regions, and (2) striking morphological parallelism and weak morphological differentiation led to the misapplication of the same name to different genotypes in one region.
Sarcocornia diversified in salt-laden environments worldwide, repeatedly evolving superficially similar prostrate, mat-forming habits that seem advantageous in stressed environments with prolonged flooding, high tidal movement and frost. Some of these prostrate-habit types might be considered as ecotypes (e.g. S. pacifica or S. pillansii) while others represent good ecospecies (e.g. S. perennis, S. decumbens, S. capensis), hence representing different stages of speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.