Chesapeake Bay supports a diverse assemblage of marine and freshwater species of submersed aquatic vegetation (SAV) whose broad distributions are generally constrained by salinity. An annual aerial SAV monitoring program and a bi-monthly to monthly water quality monitoring program have been conducted throughout Chesapeake Bay since 1984. We performed an analysis of SAV abundance and up to 22 environmental variables potentially influencing SAV growth and abundance . Historically, SAV abundance has changed dramatically in Chesapeake Bay, and since 1984, when SAV abundance was at historic low levels, SAV has exhibited complex changes including long-term (decadal) increases and decreases, as well as some large, single-year changes. Chesapeake Bay SAV was grouped into three broad-scale community-types based on salinity regime, each with their own distinct group of species, and detailed analyses were conducted on these three community-types as well as on seven distinct case-study areas spanning the three salinity regimes. Different trends in SAV abundance were evident in the different salinity regimes. SAV abundance has (a) continually increased in the low-salinity region; (b) increased initially in the medium-salinity region, followed by fluctuating abundances; and (c) increased initially in the high-salinity region, followed by a subsequent decline. In all areas, consistent negative correlations between measures of SAV abundance and nitrogen loads or concentrations suggest that meadows are responsive to changes in inputs of nitrogen. For smaller case-study areas, different trends in SAV abundance were also noted including correlations to water clarity in high-salinity case-study areas, but nitrogen was highly correlated in all areas. Current maximum SAV coverage for almost all areas remain below restoration targets, indicating that SAV abundance and associated ecosystem services are currently limited by continued poor water quality, and specifically high nutrient concentrations, within Chesapeake Bay. The nutrient reductions noted in some tributaries, which were highly correlated to increases in SAV abundance, suggest management activities have already contributed to SAV increases in some areas, but the strong negative correlation throughout the Chesapeake Bay between nitrogen and SAV abundance also suggests that further nutrient reductions will be necessary for SAV to attain or exceed restoration targets throughout the bay.
The Chesapeake Bay is one of the world's largest estuaries. Dramatic declines in the abundance and distribution of submerged aquatic vegetation (SAV) in the Chesapeake Bay over the last few decades led to a series of management decisions aimed at protecting and restoring SAV populations throughout the bay. In 2003, the Chesapeake Bay Program established a goal of planting 405 ha of SAV by 2008. Realizing that such an ambitious goal would require the development of large-scale approaches to SAV restoration, a comprehensive research effort was organized, involving federal and state agencies, academia, and the private sector. This effort differs from most other SAV restoration programs due to a strong emphasis on the use of seeds rather than plants as planting stock, a decision based on the relatively low labor requirements of seeding. Much of the research has focused on the development of tools and techniques for using seeds in large-scale SAV restoration. Since this research initiative began, an average of 13.4 ha/year of SAV has been planted in the Chesapeake Bay, compared to an average rate of 3.6 ha/year during the previous 21 years . The costs of conducting these plantings are on a downward trend as the understanding of the limiting factors increases and as new advances are made in applied research and technology development. Although this effort was focused in the Chesapeake Bay region, the tools and techniques developed as part of this research should be widely applicable to SAV restoration efforts in other areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.