Post-project appraisals (PPAs) can evaluate river restoration schemes in relation to their compliance with design, their short-term performance attainment, and their longer-term geomorphological compatibility with the catchment hydrology and sediment transport processes. PPAs provide the basis for communicating the results of one restoration scheme to another, thereby improving future restoration designs. They also supply essential performance feedback needed for adaptive management, in which management actions are treated as experiments. PPAs allow river restoration success to be defined both in terms of the scheme attaining its performance objectives and in providing a significant learning experience. Different levels of investment in PPA, in terms of pre-project data and follow-up information, bring with them different degrees of understanding and tbus different abilities to gauge both types of success. We present four case studies to illustrate how the commitment to PPA has determined the understanding achieved in each case. In Moore's Gulch (California, USA), understanding was severely constrained by the lack of pre-project data and post-implementation monitoring. Pre-project data existed for the Kitswell Brook (Hertfordshire, UK), but the monitoring consisted only of one site visit and thus the understanding achieved is related primarily to design compliance issues. The monitoring undertaken for Deep Run (Maryland, USA) and the River Idle (Nottinghamshire, UK) enabled some understanding of the short-term performance of each scheme. The transferable understanding gained from each case study is used to develop an illustrative five-fold classification of geomorphological PPAs (full, medium-term, short-term, one-shot, and remains) according to their potential as learning experiences. The learning experience is central to adaptive management but rarely articulated in the literature. Here, we gauge the potential via superimposition onto a previous schematic representation of the adaptive management process by Haney and Power (1996). Using PPAs wisely can lead to cutting-edge, complex solutions to river restoration challenges.
The Anthropocene is proposed as a new interval of geological time in which human influence on Earth and its geological record dominates over natural processes. A major challenge in demarcating the Anthropocene is that the balance between human-influenced and natural processes varies over spatial and temporal scales owing to the inherent variability of both human activities (as associated with culture and modes of development) and natural drivers (e.g. tectonic activity and sea level variation). Against this backdrop, we consider how geomorphology might contribute towards the Anthropocene debate by focusing on human impact on aeolian, fluvial, cryospheric and coastal process domains, and how evidence of this impact is preserved in landforms and sedimentary records. We also consider the evidence for an explicitly anthropogenic geomorphology that includes artificial slopes and other human-created landforms. This provides the basis for discussing the theoretical and practical contributions that geomorphology can make to defining an Anthropocene stratigraphy. It is clear that the relevance of the Anthropocene concept varies considerably amongst different branches of geomorphology, depending on the history of human actions in different process domains. For example, evidence of human dominance is more widespread in fluvial and coastal records than in aeolian and cryospheric records, so geomorphologically the Anthropocene would inevitably comprise a highly diachronous lower boundary. Even to identify this lower boundary, research would need to focus on the disambiguation of human effects on geomorphological and sedimentological signatures. This would require robust data, derived from a combination of modelling and new empirical work rather than an arbitrary ?war of possible boundaries' associated with convenient, but disputed, ?golden? spikes. Rather than being drawn into stratigraphical debates, the primary concern of geomorphology should be with the investigation of processes and landform development, so providing the underpinning science for the study of this time of critical geological transition. Copyright ? 2016 John Wiley & Sons, Ltd.authorsversionPeer reviewe
Indirect, passive approaches for monitoring coarse bedload transport could allow cheaper, safer, higher‐resolution, longer‐term data that revolutionises bedload understanding and informs river management. Here, insights provided by seismic impact plates in a downstream reach of a flashy gravel‐bed river (River Avon, Devon, UK) are explored in the context of plate performance. Monitoring of a centrally‐situated plate (IP1) during an extremely wet 12‐month period demonstrated that impacts were related to discharge as a measure of transport potential (R2 = 0.38) but that factors other than transport limitations are important. Analysis of discrete flow events revealed consistent rising‐limb and falling‐limb impact spikes biased toward the latter for larger events. Such patterns may result from disruption of the upstream armour layer (rising limb) and supply enhancements related to both upstream mass bank failures and/or flood routing of non‐local sediment sources (falling limb). Installation of additional impact plates indicated that plate IP1 was indeed dominantly related to instantaneous discharge, that a three‐plate lateral array somewhat better explained impact variability (R2 = 0.49), and that the bedload track shifts laterally with discharge. Aggregating event‐total IP1 impacts against volumetric discharge further increases explanation as intra‐event and stochastic bedload factors are subsumed but left 26% unexplained variance related to the unsampled bedload mass, inter‐event supply differences, and attributes of plate performance. Annualising the data created an impact‐based 'effective discharge’ for this extremely wet year that was closer to morphological bar‐full in magnitude than bankfull, but the preceding results imply this outcome is related as much to supply limitations as transport limitations. Overall, passive approaches offer a liberating prospect for bedload monitoring, capable of producing insights only achievable through high resolution, extended time periods. Such results could potentially inform threshold conditions and geomorphological effectiveness of flows for future river management strategies. Copyright © 2015 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.