By identifying every pair of molecules that differ only by a particular, well-defined, structural transformation in a database of measured properties and computing the corresponding change in property, we obtain an overview of the effect that structural change has upon the property and set an expectation for what will happen when that transformation is applied elsewhere. The mean change indicates the expected magnitude of the change in the property and the number of cases in which the property increases give the probability that the structural transformation will cause the property to increase. Outliers indicate potential ways of avoiding the general trend. Comparing to changes in lipophilicity highlights structural transformations that have unusual effects, some of which can be explained by conformational changes. In this paper, we focus upon the effects on aqueous solubility, plasma protein binding and oral exposure of adding substituents to aromatic rings and methylating heteroatoms.
The V(alpha)(r) descriptor was introduced and shown to be an effective and useful predictor of hydrogen bond acidity. V(alpha)(r) is defined as the electrostatic potential at a distance, r, from the donor hydrogen on an axis defined by the nuclei of the hydrogen atom and the atom to which it is bonded. V(alpha)(r) is most predictive of hydrogen bond acidity for r = 0.55 A which is less than half the van der Waals radius of hydrogen. Calculated values of V(alpha)(r) and minimized electrostatic potential (V(min)) were used to show how molecular electrostatic potential can be used to provide insight into a number of hydrogen bonding phenomena, including lactam self-association, DNA base pairing, and bioisosterism. The effects of hydrogen bond formation on the strengths of other donors in the interacting molecules were explored and quantified. Implications of these results for modeling hydrogen bond acidity, derivation of atomic charges, and development of polarizable force fields were discussed.
A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A K
i value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds.
A virtual screen of a subsection of the AstraZeneca compound collection was performed for checkpoint kinase-1 (Chk-1 kinase) using a knowledge-based strategy. This involved initial filtering of the compound collection by application of generic physical properties followed by removal of compounds with undesirable chemical functionality. Subsequently, a 3-D pharmacophore screen for compounds with kinase binding motifs was applied. A database of approximately 200K compounds remained for docking into the active site of Chk-1 kinase, using the FlexX-Pharm program. For each compound that docked successfully into the binding site, up to 100 poses were saved. These poses were then postfiltered using a customized consensus scoring scheme for a kinase, followed by visual inspection of a selection of the docked compounds. This resulted in 103 compounds being ordered for testing in the project assay, and 36 of these (corresponding to four chemical classes) were found to inhibit the enzyme in a dose-response fashion with IC(50) values ranging from 110 nM to 68 microM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.