Abstract. We study some Riemannian metrics on the space of smooth regular curves in the plane, viewed as the orbit space of maps from S 1 to the plane modulo the group of diffeomorphisms of S 1 , acting as reparameterizations. In particular we investigate the metric for a constant A > 0:where κc is the curvature of the curve c and h, k are normal vector fields to c. The term Aκ 2 is a sort of geometric Tikhonov regularization because, for A = 0, the geodesic distance between any 2 distinct curves is 0, while for A > 0 the distance is always positive. We give some lower bounds for the distance function, derive the geodesic equation and the sectional curvature, solve the geodesic equation with simple endpoints numerically, and pose some open questions. The space has an interesting split personality: among large smooth curves, all its sectional curvatures are ≥ 0, while for curves with high curvature or perturbations of high frequency, the curvatures are ≤ 0.
Here shape space is either the manifold of simple closed smooth unparameterized curves in R 2 or is the orbifold of immersions from S 1 to R 2 modulo the group of diffeomorphisms of S 1 . We investige several Riemannian metrics on shape space: L 2 -metrics weighted by expressions in length and curvature. These include a scale invariant metric and a Wasserstein type metric which is sandwiched between two length-weighted metrics. Sobolev metrics of order n on curves are described. Here the horizontal projection of a tangent field is given by a pseudo-differential operator. Finally the metric induced from the Sobolev metric on the group of diffeomorphisms on R 2 is treated. Although the quotient metrics are all given by pseudo-differential operators, their inverses are given by convolution with smooth kernels. We are able to prove local existence and uniqueness of solution to the geodesic equation for both kinds of Sobolev metrics.We are interested in all conserved quantities, so the paper starts with the Hamiltonian setting and computes conserved momenta and geodesics in general on the space of immersions. For each metric we compute the geodesic equation on shape space. In the end we sketch in some examples the differences between these metrics.
Let $M$ and $N$ be connected manifolds without boundary with $\dim(M) < \dim(N)$, and let $M$ compact. Then shape space in this work is either the manifold of submanifolds of $N$ that are diffeomorphic to $M$, or the orbifold of unparametrized immersions of $M$ in $N$. We investigate the Sobolev Riemannian metrics on shape space: These are induced by metrics of the following form on the space of immersions: $$ G^P_f(h,k) = \int_{M} \g(P^f h, k)\, \vol(f^*\g)$$ where $\g$ is some fixed metric on $N$, $f^*\g$ is the induced metric on $M$, $h,k \in \Gamma(f^*TN)$ are tangent vectors at $f$ to the space of embeddings or immersions, and $P^f$ is a positive, selfadjoint, bijective scalar pseudo differential operator of order $2p$ depending smoothly on $f$. We consider later specifically the operator $P^f=1 + A\Delta^p$, where $\Delta$ is the Bochner-Laplacian on $M$ induced by the metric $f^*\bar g$. For these metrics we compute the geodesic equations both on the space of immersions and on shape space, and also the conserved momenta arising from the obvious symmetries. We also show that the geodesic equation is well-posed on spaces of immersions, and also on diffeomorphism groups. We give examples of numerical solutions.Comment: 52 pages, final version as it will appea
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.