This paper introduces the concept and principles of hyperspectral imaging (HSI) and it briefly outlines how the defence and homeland security sectors can benefit from the application of this extremely versatile technology. This paper outlines the pros and cons of the various HSI system configurations, with particular emphasis on two of the most commonly deployed spectrograph techniques, namely, the dispersive system and the narrow-band tuning filter system. It describes how HSI can be utilized for target acquisition particularly when there is no a priori knowledge of the target, and then shows how it can be used for the recognition and tracking of targets with desired or known signature characteristics. The paper also briefly mentions the possibility of remote HSI being used for recognizing a human's physiological state such as that induced by stress or anxiety. Real experimental data collected during the course of our research have been utilized throughout this paper to help understand the versatility and effectiveness of HSI technology.
The detection of stress at early stages is beneficial to both individuals and communities. However, traditional stress detection methods that use physiological signals are contact-based and require sensors to be in contact with test subjects for measurement. In this paper, we present a method to detect psychological stress in a non-contact manner using a human physiological response. In particular, we utilize a hyperspectral imaging (HSI) technique to extract the tissue oxygen saturation (StO2) value as a physiological feature for stress detection. Our experimental results indicate that this new feature may be independent from perspiration and ambient temperature. Trier Social Stress Tests (TSSTs) on 21 volunteers demonstrated a significant difference (p < 0:005) and a large practical discrimination (d ¼ 1.37) between normalized baseline and stress StO2 levels. The accuracy for stress recognition from baseline using a binary classifier was 76.19 and 88.1 percent for the automatic and manual selections of the classifier threshold, respectively. These results suggest that the StO2 level could serve as a new modality to recognize stress at standoff distances.
Classification of hyperspectral images (HSI) has been a challenging problem under active investigation for years especially due to the extremely high data dimensionality and limited number of samples available for training. It is found that hyperspectral image classification can be generally improved only if the feature extraction technique and the classifier are both addressed. In this paper, a novel classification framework for hyperspectral images based on the joint bilateral filter and sparse representation classification (SRC) is proposed. By employing the first principal component as the guidance image for the joint bilateral filter, spatial features can be extracted with minimum edge blurring thus improving the quality of the band-to-band images. For this reason, the performance of the joint bilateral filter has shown better than that of the conventional bilateral filter in this work. In addition, the spectral similarity-based joint SRC (SS-JSRC) is proposed to overcome the weakness of the traditional JSRC method. By combining the joint bilateral filtering and SS-JSRC together, the superiority of the proposed classification framework is demonstrated with respect to several state-of-the-art spectral-spatial classification approaches commonly employed in the HSI community, with better classification accuracy and Kappa coefficient achieved.
Band selection plays an important role in hyperspectral data analysis as it can improve the performance of data analysis without losing information about the constitution of the underlying data. We propose a MIMR-DGSA algorithm for band selection by following the Maximum-Information-Minimum-Redundancy (MIMR) criterion that maximises the information carried by individual features of a subset and minimises redundant information between them. Subsets are generated with a modified Discrete Gravitational Search Algorithm (DGSA) where we definine a neighbourhood concept for feature subsets. A fast algorithm for pairwise mutual information calculation that incorporates variable bandwidths of hyperspectral bands called VarBWFastMI is also developed. Classification results on three hyperspectral remote sensing datasets show that the proposed MIMR-DGSA performs similar to the original MIMR with Clonal Selection Algorithm (CSA) but is computationally more efficient and easier to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.