A new method is proposed for making inferences from multinomial data in cases where there is no prior information. A paradigm is the problem of predicting the colour of the next marble to be drawn from a bag whose contents are (initially) completely unknown. In such problems we may be unable to formulate a sample space because we do not know what outcomes are possible. This suggests an invariance principle: inferences based on observations should not depend on the sample space in which the observations and future events of interest are represented. Objective Bayesian methods do not satisfy this principle. This paper describes a statistical model, called the imprecise Dirichlet model, for drawing coherent inferences from multinomial data. Inferences are expressed in terms of posterior upper and lower probabilities. The probabilities are initially vacuous, reflecting prior ignorance, but they become more precise as the number of observations increases. This model does satisfy the invariance principle. Two sets of data are analysed in detail. In the first example one red marble is observed in six drawings from a bag. Inferences from the imprecise Dirichlet model are compared with objective Bayesian and frequentist inferences. The second example is an analysisof data from medical trials which compared two treatments for cardiorespiratory failure in newborn babies. There are two problems: to draw conclusions about which treatment is more effective and to decide when the randomized trials should be terminated. This example shows how the impreciseDirichlet model can be used to analyse data in the form of a contingency table.
Belief functions, possibility measures and Choquet capacities of order 2, which are special kinds of coherent upper or lower probability, are amongst the most popular mathematical models for uncertainty and partial ignorance. I give examples to show that these models are not sufficiently general to represent some common types of uncertainty. Coherent lower previsions and sets of probability measures are considerably more general but they may not be sufficiently informative for some purposes. I discuss two other models for uncertainty, involving sets of desirable gambles and partial preference orderings. These are more informative and more general than the previous models, and they may provide a suitable mathematical setting for a unified theory of imprecise probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.