Abstract. The control of robot swarming in a distributed manner is a difficult problem because global behaviors must emerge as a result of many local actions. This paper uses a bio-inspired control method called the Digital Hormone Model (DHM) to control the tasking and executing of robot swarms based on local communication, signal propagation, and stochastic reactions. The DHM model is probabilistic, dynamic, fault-tolerant, computationally efficient, and can be easily tasked to change global behavior. Different from most existing distributed control and learning mechanisms, DHM considers the topological structure of the organization, supports dynamic reconfiguration and self-organization, and requires no globally unique identifiers for individual robots. The paper describes the DHM and presents the experimental results on simulating biological observations in the forming of feathers, and simulating wireless communicated swarm behavior at a large scale for attacking target, forming sensor networks, self-repairing, and avoiding pitfalls in mission execution.
Abstract-The goal of the Conro Project is to build deployable modular robots that can reconfigure into different shapes such as snakes or hexapods. Each Conro module is, itself, a robot and hence a Conro robot is actually a multirobot system. In this paper we present an overview of the Conro modules, the design approach, an overview of the mechanical and electrical systems and a discussion on size versus power requirement of the module. Each module is self-contained; it has its own processor, power supply, communication system, sensors and actuators. The modules, although self-contained, were designed to work in groups, as part of a large modular robot. We conclude the paper by describing some of the robots that we have built using the Conro modules and describing the miniature custom-made Conro camera as an example of the type of sensors that can be carried as payload by these robots.
Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to swarming robot navigation, reaching intelligent automata and representing a self-re-configurable type of control rather than a follow-the-instruction type of control. KEY WORDS: periodic patterning, reaction -diffusion, tissue engineering, complexity, self- The formation of each organ goes through induction, morphogenesis, and differentiation stages. During the morphogenesis stage, the shape, pattern, and size that constitute the functional form of an organ are laid down. Pattern formation is one of the fundamental processes that take place during the morphogenesis stage. The easiest patterns to observe are found on the integument (Bereiter-Hahn et al., 1986). The striking examples of Integument pattern formations are the avian plumages, leopard dots, tiger stripes, etc. In Fig. 1, we can appreciate examples of different integument patterns which grace our eyes that are produced by Nature.How do these patterns form? Are they under strict genetic control? Then, why are many patterns similar but not identical. Are they under epigenetic control? ...
Experimental results that provide new insights into nanomanipulation phenomena are presented. Reliable and accurate positioning of colloidal nanoparticles on a surface is achieved by pushing them with the tip of an atomic force microscope under control of software that compensates for instrument errors. Mechanical pushing operations can be monitored in real time by acquiring simultaneously the cantilever deflection and the feedback signal (cantilever non-contact vibration amplitude). Understanding of the underlying phenomena and real-time monitoring of the operations are important for the design of strategies and control software to manipulate nanoparticles automatically. Manipulation by pushing can be accomplished in a variety of environments and materials. The resulting patterns of nanoparticles have many potential applications, from high-density data storage to single-electron electronics, and prototyping and fabrication of nanoelectromechanical systems.
Hydroxylamine-seeding of colloidal gold particles has been used to fabricate gold nanostructures on a SiO2 substrate. Gold nanoparticles (15 nm diameter) were randomly deposited on a SiO2 surface that had been modified with aminopropyltrimethoxysilane (APTS). The nanoparticles were then manipulated using a scanning force microscope (SFM) tip to produce 1-D templates for gold deposition. We demonstrate the utility of this approach by fabricating a gold nanowire by using 13 nanoparticles as a template. The junction between joined (coated) particles was examined by mechanical manipulation, and homogeneous deposition was shown to form stable structures. This approach was also used to fabricate nanostructures in a small gap between two gold electrodes. Particles were pushed into the gap, and then gold deposition was used to "connect" the particles and electrodes. Although the particular structure tested was not electrically connected to the electrode, we suggest that this approach will be useful in tackling the difficult problems associated with electrically connecting nano-to microscale structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.