Performance of investment managers are evaluated in comparison with benchmarks, such as financial indices. Due to the operational constraint that most professional databases do not track the change of constitution of benchmark portfolios, standard tests of performance suffer from the "look-ahead benchmark bias," when they use the assets constituting the benchmarks of reference at the end of the testing period, rather than at the beginning of the period. Here, we report that the "look-ahead benchmark bias" can exhibit a surprisingly large amplitude for portfolios of common stocks (up to 8% annum for the S&P500 taken as the benchmark) -while most studies have emphasized related survival biases in performance of mutual and hedge funds for which the biases can be expected to be even larger. We use the CRSP database from 1926 to 2006 and analyze the running top 500 US capitalizations to demonstrate that this bias can account for a gross overestimation of performance metrics such as the Sharpe ratio as well as an underestimation of risk, as measured for instance by peak-to-valley drawdowns. We demonstrate the presence of a significant bias in the estimation of the survival and look-ahead biases studied in the literature. A general methodology to test the properties of investment strategies is advanced in terms of random strategies with similar investment constraints.
Estimates of agents' risk aversion differ between market studies and experimental studies. We demonstrate that the estimates can be reconciled through consistent treatment of agents' tendency for narrow framing, regarding integration of background wealth as well as across risky outcomes: Risk aversion is similar whenever similar degrees of narrow framing is assumed in either setting.JEL-Classification: G11, G12, D81.
We apply the recurrent reinforcement learning method of Moody, Wu, Liao, and Saffell (1998) in the context of the strategic asset allocation computed for sample data from US, UK, Germany, and Japan. It is found that the optimal asset allocation deviates substantially from the fixed-mix rule. The investor actively times the market and he is able to outperform it consistently over the almost two decades we analyze.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.