Summary Background Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing’s disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Methods Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Results Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R2 = 0.68, P = 7.1×10−10) and brain (R2 = 0.33, P = 0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R2 = 0.49, P = 2.7×10−5) and expression (R2 = 0.43, P = 3.5×10−5) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Conclusion Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues.
Objective-Brain-derived neurotrophic factor (BDNF) plays an important role in the survival, differentiation, and outgrowth of select peripheral and central neurons throughout adulthood. There is growing evidence suggesting that BDNF is involved in the pathophysiology of mood disorders. Methods-TenSNPs across the BDNF gene were genotyped in a sample of 1,749 Caucasian Americans from 250 multiplex bipolar families. Family-based association analysis was employed with three hierarchical bipolar disorder models to test for association between SNPs in BDNF and the risk for bipolar disorder. In addition, an exploratory analysis was performed to test for an association of the SNPs in BDNF and the phenotypes of rapid cycling and episode frequency.Results-Evidence of association (p<0.05) was found with several of the SNPs using multiple models of bipolar disorder; one of these SNPs also showed evidence of association (p<0.05) with rapid cycling. Conclusion-These results provide further evidence that variation in BDNF affects the risk for bipolar disorder.
Our group first reported a linkage finding for bipolar (BP) disorder on chromosome 8q24 in a study of 50 multiplex pedigrees, with an HLOD score reaching 2.39. Recently, Cichon et al reported an LOD score of 3.62 in the same region using two-point parametric analysis. Subsequently, we published the results of a genome scan for linkage to BP disorder using a sample extended to 65 pedigrees in which chromosome 8q24 provided the best finding, an NPL score of 3.13, approaching the accepted score for suggestive linkage. We have now fine mapped this region of chromosome 8 in our 65 pedigrees by the addition of 19 microsatellite markers reaching a marker density of 0.8 cM and an information content of 0.84. After the addition of the new data, the original NPL score slightly increased to 3.25. Two-point parametric analysis using the model employed by Cichon et al obtained an LOD score of 3.32 for marker D8S256 at h ¼ 0.14 exceeding the proposed threshold for genomewide significance. After adjusting the parameters in accordance with the 'common disease-common variant' hypothesis, multipoint parametric analysis resulted in an HLOD of 2.49 (a ¼ 0.78) between D8S529 and D8S256, and defined a 1-LOD interval corresponding to a 2.3 Mb region. No allelic association with the disease was observed for our set of microsatellite markers. Biologically, plausible candidate genes in this region include thyroglobulin, KCNQ3 coding for a voltagegated potassium channel and the gene for brain adenyl-cyclase (ADCY8).
The Reelin gene (RELN) encodes a secretory glycoprotein critical for brain development and synaptic plasticity. Post-mortem studies have shown lower Reelin protein levels in the brains of patients with schizophrenia and bipolar disorder (BP) compared with controls. In a recent genomewide association study of schizophrenia, the strongest association was found in a marker within RELN, although this association was seen only in women. In this study, we investigated whether genetic variation in RELN is associated with BP in a large family sample. We genotyped 75 tagSNPs and 6 coding SNPs in 1,188 individuals from 318 nuclear families, including 554 affected offspring. Quality control measures, transmission-disequilibrium tests (TDTs), and empirical simulations were performed in PLINK. We found a significant overtransmission of the C allele of rs362719 to BP offspring (OR = 1.47, P = 5.9 × 10 -4 ); this withstood empirical correction for testing of multiple markers (empirical P = 0.048). In a hypothesis-driven secondary analysis, we found that the association with rs362719 was almost entirely accounted for by overtransmission of the putative risk allele to affected females (OR Female = 1.79, P = 8.9 × 10 -5 vs. OR Male = 1.12, P = 0.63). These results provide preliminary evidence that genetic variation in RELN is associated with susceptibility to BP and, in particular, to BP in females. However, our findings should be interpreted with caution until further replication and functional assays provide convergent support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.