Understanding glacier drainage system behaviour and its response to increased meltwater production faces several challenges in the High Arctic because many glaciers are transitioning from polythermal to almost entirely cold thermal structures. We, therefore, used ground-penetrating radar data to investigate the thermal structure and drainage system of Waldemarbreen in Svalbard: a small High Arctic glacier believed to be undergoing thermal change. We found that Waldemarbreen retains up to 80 m of temperate ice in its upper reaches, but this thickness most likely is a relict from the Little Ice Age when greater ice volumes were insulated from winter cooling and caused greater driving stresses. Since then, negative mass balance and firn loss have prevented latent heat release and allowed near-surface ice temperatures to cool in winter, thus reducing the thickness of the temperate ice. Numerous reflectors that can be traced up-glacier are interpreted as englacial channels formed by hydrofracturing in the crevassed upper region of the glacier. The alternative cut and closure mechanism of conduit initiation only forms conduits in parts of the lower ablation area. Consequently, Waldemarbreen provides evidence that hydrofracturing at higher elevations can play a major role in englacial water drainage through cold ice.
Glacial geomorphological mapping of western Latvia using a 1-m-resolution digital elevation model generated from airborne LiDAR data has revealed two sets of mega-scale glacial lineations (MSGLs), one of which is superimposed by crevasse-squeeze ridges (CSRs). CSRs occur as a dense ridge network with a dominant orientation of ridges perpendicular to the ice flow direction. The landform assemblage is interpreted as evidence for two separate phases of fast ice flow with different ice flow directions during the overall deglaciation of the Fennoscandian Ice Sheet (FIS). The first fast ice flow phase occurred from the northwest by the Usma Ice Lobe that extended in the Eastern Kursa Upland. The second fast ice flow occurred from the north by the Venta Ice Tongue in a narrow flow corridor limited mainly to the Kursa Lowland. Active ice streaming caused ice crevassing perpendicular to the ice flow direction and formation of CSRs by squeezing of subglacial till into basal crevasses. A good preservation of the CSRs and general lack of recessional moraines suggest widespread stagnation and ice mass melting after the shutdown of the Venta Ice Tongue followed by the formation of the Venta-Usma ice-dammed lake and glaciolacustrine deposition in the lowest areas of lowland. Our data provide the first evidence of CSRs in the south-eastern terrestrial sector of the FIS suggesting the dynamic ice streaming or surging behaviour of the ice lobes and tongues in this region during deglaciation.
Unmanned Aerial Vehicles (UAVs) are being increasingly used in glaciology demonstrating their potential for the generation of high-resolution digital elevation models (DEMs) that can be further used for the evaluation of glacial processes in detail. Such investigations are especially important for the evaluation of surface changes of small valley glaciers, which are not well-represented in lower-resolution satellite-derived products. In this study, we performed two UAV surveys at the end of the ablation season in 2019 and 2021 on Waldemarbreen, a High-Arctic glacier in NW Svalbard. We derived the mean annual glacier surface velocity of 5.3 m. The estimated mean glacier surface elevation change from 2019 to 2021 was −1.46 m a−1 which corresponds to the geodetic mass balance (MB) of −1.33 m w.e. a−1. The glaciological MB for the same period was −1.61 m w.e. a−1. Our survey includes all Waldemarbreen and demonstrates the efficiency of high-resolution DEMs produced from UAV photogrammetry for the reconstruction of changes in glacier surface elevation and velocity. We suggest that glaciological and geodetic MB methods should be used complementary to each other.
Although measurements of thickness and internal structure of glaciers are substantial for the understanding of their evolution and response to climate change, detailed data about polythermal glaciers, are scarce. Here, we present the first ground-penetrating radar (GPR) measurement data of Irenebreen, and high-resolution DEM and orthomosaic, obtained from unmanned aerial vehicle (UAV) photogrammetry. A combination of GPR and UAV data allowed for the reconstruction of the glacier geometry including thermal structure. We compare different methods of GPR signal propagation speed determination and argue that a common midpoint method (CMP) should be used if possible. Our observations reveal that Irenebreen is a polythermal glacier with a basal temperate ice layer, the volume of which volume reaches only 12% of the total glacier volume. We also observe the intense GPR signal scattering in two small zones in the ablation area and suggest that intense water percolation occurs in these places creating local areas of temperate ice. This finding emphasizes the possible formation of localised temperate ice zones in polythermal glaciers due to the coincidence of several factors. Our study demonstrates that a combination of UAV photogrammetry and GPR can be successfully applied and should be used for the high-resolution reconstruction of 3D geometries of small glaciers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.