Genomic DNA base composition (GC content) is predicted to significantly affect genome functioning and species ecology. Although several hypotheses have been put forward to address the biological impact of GC content variation in microbial and vertebrate organisms, the biological significance of GC content diversity in plants remains unclear because of a lack of sufficiently robust genomic data. Using flow cytometry, we report genomic GC contents for 239 species representing 70 of 78 monocot families and compare them with genomic characters, a suite of life history traits and climatic niche data using phylogeny-based statistics. GC content of monocots varied between 33.6% and 48.9%, with several groups exceeding the GC content known for any other vascular plant group, highlighting their unusual genome architecture and organization. GC content showed a quadratic relationship with genome size, with the decreases in GC content in larger genomes possibly being a consequence of the higher biochemical costs of GC base synthesis. Dramatic decreases in GC content were observed in species with holocentric chromosomes, whereas increased GC content was documented in species able to grow in seasonally cold and/or dry climates, possibly indicating an advantage of GC-rich DNA during cell freezing and desiccation. We also show that genomic adaptations associated with changing GC content might have played a significant role in the evolution of the Earth's contemporary biota, such as the rise of grass-dominated biomes during the mid-Tertiary. One of the major selective advantages of GC-rich DNA is hypothesized to be facilitating more complex gene regulation.plant genome | genome size evolution | Poaceae | phylogenetic regression | geographical stratification D eep insights into the genomic architecture of model plants are rapidly accumulating, especially because of advances being made in high-throughput next generation and third generation sequencing techniques (1). However, the genomic constitution of the vast majority of nonmodel plants still remains unknown (2), impeding our understanding of the relationship between particular genomic architectures and evolutionary fitness in various environments. One of the important qualitative aspects of genomic architecture is the genomic nucleotide composition, which is usually expressed as the proportion of guanine and cytosine bases in the DNA molecule (GC content). In prokaryotes, the GC content is a well-studied and widely used character in taxonomy (3), and numerous studies have shown both the impact of GC content on microbial ecology and the influence of the environment in shaping the DNA base composition of microbial communities (4-7). The DNA base composition is also frequently discussed in relation to the evolution of the isochore structure in humans and other homeothermic (warm-blooded) vertebrates (i.e., birds and mammals) (8-10). In contrast, considerably less attention has been paid to the biological relevance of genomic GC content variation in plants (11), with genomic GC co...
Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.
The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n 5 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n 5 14, 18, 20, 32, and 36. In high-polyploid (n $ 30) species Crambe maritima (2n 5 60), Crambe cordifolia (2n 5 120), and Vella pseudocytisus (2n 5 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2-2.5 pg/2C) has been found in Brassiceae species with 2n 5 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n 5 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships.Approximately 240 cruciferous species of the Brassicaceae family classified into approximately 52 genera and sharing distinct morphological characters with the genus Brassica are taxonomically treated as the tribe Brassiceae (
SummaryPolyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested.We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogenybased statistics.The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation.Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation.
The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary hypotheses and their usefulness for large-scale genomic projects. Taken together, the results suggest that there is an evolutionary advantage for small genomes in Festuca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.