We compute explicitly the oscillation constant for certain half-linear secondorder differential equations involving periodic coefficients. If these periodic functions are constants, our results reduce to the well-known oscillation constants for half-linear Euler and Riemann-Weber differential equations.
We investigate second-order half-linear differential equations with asymptotically almost periodic coefficients. For these equations, we explicitly find an oscillation constant. If the coefficients are replaced by constants, our main result (concerning the conditional oscillation) reduces to the classical one. We also mention examples and concluding remarks. MSC: 34C10; 34C15
The paper belongs to the qualitative theory of half-linear equations which are located between linear and non-linear equations and, at the same time, between ordinary and partial differential equations. We analyse the oscillation and non-oscillation of second-order half-linear differential equations whose coefficients are given by the products of functions having mean values and power functions. We prove that the studied very general equations are conditionally oscillatory. In addition, we find the critical oscillation constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.