Nowadays, the construction of cement composite using 3D printers is considered one of the most promising methods of automation of building processes. However, the compositions of cement composites have several disadvantages, such as high cost, short workability and etc. It has been suggested that clay soil as an additive will help to solve these problems partially. The aim of the work is development the cement compositions with clay soil, for use in 3D printers to construction. The composite consists of cement paste with clay soil and additives. To study printability of a composite the rheological properties in a fresh state were studied. The study of the rheological properties of composites was carried out using a flow table test for mortar. The key factor for determining the suitability of the composite for printing was accepted the diameter of the cone after shaking. The test results showed the possibility of replacing cement paste with clay soil up to 25% which leads to a reduction in the cost and an increase in printability with a slight decrease in the strength of the obtained material to 7%. Utilizing of soil from the construction site provides maximum economic efficiency of the material application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.