In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of
This work presents an algorithm for the development of adaptive soft sensors. The method is based on the local learning framework, where locally valid models are built and maintained. In this framework, it is possible to model nonlinear relationship between the input and output data by the means of a combination of linear models. The method provides the possibility to perform adaptation at two levels: (i) recursive adaptation of the local models and (ii) the adaptation of the combination weights. The dataset used for evaluation of the algorithm describes a polymerization reactor where the target value is a simulated catalyst activity in the reactor. This dataset is also used to evaluate the performance of the proposed algorithm. The results show that the traditional recursive partial least squares algorithm struggles to deliver accurate predictions. In contrast to this, by exploiting the two-level adaptation scheme, the proposed algorithm delivers more accurate results. V
This work presents an architecture for the development of on-line prediction models. The architecture defines unified modular environment based on three concepts from machine learning, these are: (i) ensemble methods, (ii) local learning, and (iii) meta learning. The three concepts are organised in a three layer hierarchy within the architecture. For the actual prediction making any data-driven predictive method such as artificial neural network, support vector machines, etc. can be implemented and plugged in. In addition to the predictive methods, data pre-processing methods can also be implemented as plug-ins. Models developed according to the architecture can be trained and operated in different modes. With regard to the training, the architecture supports the building of initial models based on a batch of training data, but if this data is not available the models can also be trained in incremental mode. In a scenario where correct target values are (occasionally) available during the run-time, the architecture supports life-long learning by providing several adaptation mechanisms across the three hierarchical levels. In order to demonstrate its practicality, we show how the issues of current soft sensor development and maintenance can be effectively dealt with by using the architecture as a construction plan for the development of adaptive soft sensing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.