This work addresses the problem of mining data streams generated in dynamic environments where the distribution underlying the observations may change over time. We present a system that monitors the evolution of the learning process. The system is able to self-diagnose degradations of this process, using change detection mechanisms, and selfrepair the decision models. The system uses meta-learning techniques that characterize the domain of applicability of previously learned models. The meta-learner can detect recurrence of contexts, using unlabeled examples, and take pro-active actions by activating previously learned models. The experimental evaluation on three text mining problems demonstrates the main advantages of the proposed system: it provides information about the recurrence of concepts and rapidly adapts decision models when drift occurs.
Data stream mining is the process of extracting knowledge structures from continuous, rapid data records. Many decision tasks can be formulated as stream mining problems and therefore many new algorithms for data streams are being proposed. Decision rules are one of the most interpretable and flexible models for predictive data mining. Nevertheless, few algorithms have been proposed in the literature to learn rule models for time-changing and high-speed flows of data. In this paper we present the very fast decision rules (VFDR) algorithm and discuss interesting extensions to the base version. All the proposed versions are one-pass and anytime algorithms. They work on-line and learn ordered or unordered rule sets. Algorithms designed to work with data streams should be able to detect changes and quickly adapt the decision model. In order to manage these situations we also present the adaptive extension (AVFDR) to detect changes in the process generating data and adapt the decision model. Detecting local drifts takes advantage of the modularity of the rule sets. In AVFDR, each individual rule monitors the evolution of performance metrics to detect concept drift. AVFDR prunes rules whenever a drift is signaled. This explicit change detection mechanism provides useful information about the dynamics of the process generating data, faster adaptation to changes and generates more compact rule sets. The experimental evaluation demonstrates that algorithms achieve competitive results in comparison to Responsible editor: Johannes Fürnkranz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.