Current biological and medical research is aimed at obtaining a detailed spatiotemporal map of a live cell's interior to describe and predict cell's physiological state. We present here an algorithm for complete 3-D modelling of cellular structures from a z-stack of images obtained using label-free wide-field bright-field light-transmitted microscopy. The method visualizes 3-D objects with a volume equivalent to the area of a camera pixel multiplied by the z-height.The computation is based on finding pixels of unchanged intensities between two consecutive images of an object spread function. These pixels represent strongly light-diffracting, light-absorbing, or light-emitting objects. To accomplish this, variables derived from Rényi entropy are used to suppress camera noise. Using this algorithm, the detection limit of objects is only limited by the technical specifications of the microscope setup-we achieve the detection of objects of the size of one camera pixel. This method allows us to obtain 3-D reconstructions of cells from bright-field microscopy images that are comparable in quality to those from electron microscopy images.
Abstract:We generalize the point information gain (PIG) and derived quantities, i.e., point information gain entropy (PIE) and point information gain entropy density (PIED), for the case of the Rényi entropy and simulate the behavior of PIG for typical distributions. We also use these methods for the analysis of multidimensional datasets. We demonstrate the main properties of PIE/PIED spectra for the real data on the example of several images, and discuss further possible utilizations in other fields of data processing.
Abstract:We generalize the point information gain (PIG) and derived quantities, i.e., point information gain entropy (PIE) and point information gain entropy density (PIED), for the case of the Rényi entropy and simulate the behavior of PIG for typical distributions. We also use these methods for the analysis of multidimensional datasets. We demonstrate the main properties of PIE/PIED spectra for the real data with the examples of several images and discuss further possible utilizations in other fields of data processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.