This paper introduces our solution (ISIBrno-AIMT team) to the Physionet Challenge 2022. The main goal of the challenge was a classification of heart murmurs from phonocardiographic recordings into three mutually exclusive classes (i.e., present, unknown, and not present) and to determine whether the patient's overall status is Normal or Abnormal. We propose a deep learning method that classifies whether there is a heart murmur in the phonocardiographic recording and also provides heart sound segmentation. Furthermore, the expert feature classifier assesses whether the patient's status is normal or abnormal. Our approach achieved a hidden test challenge score of 0.755 in the murmur classification task and a score of 12313 in the patient outcome classification task. Our team was ranked as 9th and 12th out of 40 teams in the official ranking for murmur and outcome classification, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.