Numerous members of the cytochrome P450 (CYP) superfamily are induced after exposure to a variety of xenobiotics in human liver. We have gained considerable mechanistic insights into these processes in hepatocytes and multiple ligand-activated transcription factors have been identified over the past two decades. Families CYP1, CYP2 and CYP3 involved in xenobiotic metabolism are also expressed in a range of extrahepatic tissues (e.g. intestine, brain, kidney, placenta, lung, adrenal gland, pancreas, skin, mammary gland, uterus, ovary, testes and prostate). Since the expression of the majority of the isoforms appears to be very low in the extrahepatic tissues in comparison with predominant expression in adult liver, the role of the enzymes in overall biotransformation and total body clearance is minor. However, basal expression and up-regulation of extrahepatic CYP enzymes can significantly affect local disposition of xenobiotics or endogenous compounds in peripheral tissues and thus modify their pharmacological/toxicological effects or affect absorption of xenobiotics into systemic circulation. The goal of this review is to critically examine our current understanding of molecular mechanisms involved in induction of xenobiotic metabolizing CYP genes of human families CYP1, CYP2 and CYP3 by exogenous chemicals in extrahepatic tissues. We concentrate on organs such as the intestine, kidney, lung, placenta and skin, which are involved in drug distribution and clearance or are in direct contact with environmental xenobiotics. We also discuss single nucleotide polymorphisms (SNPs) of key CYPs, which at the level of transcription affect expression of the genes in the extrahepatic tissues or are associated with some pathophysiological stages or disorders in the organs.
The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter that extrudes xenotoxins from cells, mediating drug resistance and affecting the pharmacological behavior of many compounds. To study the interaction of human wild-type BCRP with steroid drugs, hormones, and the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), we expressed human BCRP in the murine MEF3.8 fibroblast cell line, which lacks Mdr1a/1b P-glycoprotein and Mrp1, and in the polarized epithelial MD-CKII cell line. We show that PhIP was efficiently transported by human BCRP in MDCKII-BCRP cells, as was found previously for murine Bcrp1. Furthermore, we show that six out of nine glucocorticoid drugs, corticosterone, and digoxin increased the accumulation of mitoxantrone in the MEF3.8-BCRP cell line, indicating inhibition of BCRP. In contrast, aldosterone and ursodeoxycholic acid had no significant effect on BCRP. The four most efficiently reversing glucocorticoid drugs (beclomethasone, 6␣-methylprednisolone, dexamethasone, and triamcinolone) and 17-estradiol showed a significantly reduced BCRPmediated transepithelial transport of PhIP by MDCKII-BCRP cells, with the highest reduction of PhIP transport ratio for beclomethasone (from 25.0 Ϯ 1.1 to 2.7 Ϯ 0.0). None of the tested endogenous steroids or synthetic glucocorticoids or digoxin, however, were transported substrates of BCRP. We also identified the H 2 -receptor antagonist drug cimetidine as a novel efficiently transported substrate for human BCRP and mouse Bcrp1. The generated BCRP-expressing cell lines thus provide valuable tools to study pharmacological and toxicological interactions mediated by BCRP and to identify new BCRP substrates.The breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP-binding cassette (ABC) family of drug transporters. Human BCRP has been shown to mediate drug resistance through energy-dependent efflux of drug substrates without the need for glutathione. The range of drugs to which BCRP can confer resistance in tumor cell lines includes mi-
Aryl hydrocarbon receptor (AhR) is an important transcriptional regulator of drug metabolizing enzymes that dominantly controls the expression of cytochrome P450 CYP1 family genes and some phase II enzymes. AhR also has many endogenous functions including cell cycle control, immune response, and cell differentiation. In addition, AhR is well-known to be involved in chemically-induced carcinogenesis. AhR is activated by a variety of endogenous and exogenous ligands. While exogenous activation of AhR has deleterious effects on human organism, sustained activation of AhR by endogenous ligands is indispensable for proper cell functions. Therefore, the effects of exogenous and endogenous ligands on AhR resemble the Dr. Jekyll and Mr. Hyde story. The aim of the current paper is to summarize and update the knowledge on exogenous and endogenous AhR ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.