TiO/g-CN photocatalysts with the ratio of TiO to g-CN ranging from 0.3/1 to 2/1 were prepared by simple mechanical mixing of pure g-CN and commercial TiO Evonik P25. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, transmission electron microscopy, photoelectrochemical measurements, and nitrogen physisorption. The prepared mixtures along with pure TiO and g-CN were tested for the photocatalytic reduction of carbon dioxide and photocatalytic decomposition of nitrous oxide. The pure g-CN exhibited the lowest photocatalytic activity in both cases, pointing to a very high recombination rate of charge carriers. On the other hand, the most active photocatalyst toward all the products was (0.3/1)TiO/g-CN. The highest activity is achieved by combination of a number of factors: (i) specific surface area, (ii) adsorption edge energy, (iii) crystallite size, and (iv) efficient separation of the charge carriers, where the efficient charge separation is the most decisive parameter.
This review outlines the latest research into the design of graphitic carbon nitride (g-C3N4) with non-metal elements. The emphasis is put on modulation of composition and morphology of g-C3N4 doped with oxygen, sulfur, phosphor, nitrogen, carbon as well as nitrogen and carbon vacancies. Typically, the various methods of non-metal elements introducing in g-C3N4 have been explored to simultaneously tune the textural and electronic properties of g-C3N4 for improving its response to the entire visible light range, facilitating a charge separation, and prolonging a charge carrier lifetime. The application fields of such doped graphitic carbon nitride are summarized into three categories: CO2 reduction, H2-evolution, and organic contaminants degradation. This review shows some main directions and affords to design the g-C3N4 doping with non-metal elements for real photocatalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.