Path planning or network route planning problems are an important issue in AI, robotics, or computer games. Appropriate implementation and knowledge of advanced and classical path-planning algorithms can be important for both autonomous navigation systems and computer games. In this paper, we compare advanced path planning algorithms implemented on a two-dimensional grid. Advanced path planning algorithms, including pseudocode, are introduced. The experiments were performed in the Python environment, thus with a significant performance margin over C++ or Rust implementations. The main focus is on the speedup of the algorithms compared to a baseline method, which was chosen to be the well-known Dijkstra's algorithm. All experiments correspond to trajectories on a two-dimensional grid, with variously defined constraints. The motion from each node corresponds to a Moore neighborhood, i.e., it is possible in eight directions. In this paper, three well-known path planning algorithms are described and compared: the Dijkstra, A* and A* /w Bounding Box. And two advanced methods are included, namely Jump Point Search (JPS), incorporated with the Bounding Box variant (JPS+BB), and Simple Subgoal (SS). These advanced methods clearly show their advantage in the context of the speed up of solution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.