Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N and C), each bearing a Zn-dependent active site. We modeled the 3D-structure of the ACE N-domain using known structures of the C-domain of human ACE and the ACE homologue, ACE2, as templates. Two monoclonal antibodies (mAb), 3A5 and i2H5, developed against the human N-domain of ACE, demonstrated anticatalytic activity. N-domain modeling and mutagenesis of 21 amino acid residues allowed us to define the epitopes for these mAbs. Their epitopes partially overlap: amino acid residues K407, E403, Y521, E522, G523, P524, D529 are present in both epitopes. Mutation of 4 amino acid residues within the 3A5 epitope, N203E, R550A, D558L, and K557Q, increased the apparent binding of mAb 3A5 with the mutated N-domain 3-fold in plate precipitation assay, but abolished the inhibitory potency of this mAb. Moreover, mutation D558L dramatically decreased 3A5-induced ACE shedding from the surface of CHO cells expressing human somatic ACE. The inhibition of N-domain activity by mAbs 3A5 and i2H5 obeys similar kinetics. Both mAbs can bind to the free enzyme and enzyme-substrate complex, forming E.mAb and E.S.mAb complexes, respectively; however, only complex E.S can form a product. Kinetic analysis indicates that both mAbs bind better with the ACE N-domain in the presence of a substrate, which, in turn, implies that binding of a substrate causes conformational adjustments in the N-domain structure. Independent experiments with ELISA demonstrated better binding of mAbs 3A5 and i2H5 in the presence of the inhibitor lisinopril as well. This effect can be attributed to better binding of both mAbs with the "closed" conformation of ACE, therefore, disturbing the hinge-bending movement of the enzyme, which is necessary for catalysis.
Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N- and C-), each bearing a Zn-dependent active site. ACE inhibitors are among the most prescribed drugs in the treatment of hypertension and cardiac failure. Fine epitope mapping of two monoclonal antibodies (mAb), 1G12 and 6A12, against the N-domain of human ACE, was developed using the N-domain 3D-structure and 21 single and double N-domain mutants. The binding of both mAbs to their epitopes on the N-domain of ACE is significantly diminished by the presence of the C-domain in the two-domain somatic tissue ACE and further diminished by the presence of sialic acid residues on the surface of blood ACE. The binding of these mAbs to blood ACE, however, increased dramatically (5-10-fold) in the presence of ACE inhibitors or EDTA, whereas the effect of these compounds on the binding of the mAbs to somatic tissue ACE was less pronounced and even less for truncated N-domain. This implies that the binding of ACE inhibitors or removal of Zn2+ from ACE active centers causes conformational adjustments in the mutual arrangement of N- and C-domains in the two-domain ACE molecule. As a result, the regions of the epitopes for mAb 1G12 and 6A12 on the N-domain, shielded in somatic ACE by the C-domain globule and additionally shielded in blood ACE by sialic acid residues in the oligosaccharide chains localized on Asn289 and Asn416, become unmasked. Therefore, we demonstrated a possibility to employ these mAbs (1G12 or 6A12) for detection and quantification of the presence of ACE inhibitors in human blood. This method should find wide application in monitoring clinical trials with ACE inhibitors as well as in the development of the approach for personalized medicine by these effective drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.