Efficient holmium fiber lasers have been studied as attractive laser sources operating around 2.1 μm. We report on holmium-doped silica fibers prepared by the modified chemical vapor deposition in combination with either a solution-doping method or a nanoparticle-doping method. A set of 15 fibers with various compositions was characterized and compared with respect to their fluorescence lifetime, laser slope efficiency and laser threshold. This set of fibers in wide concentration ranges allowed us to assess reliably the influence of material composition and the influence of doping method. The best-performance fibers exhibited slope efficiency 83.1%, laser threshold 155 mW and a record value of upper laser level lifetime of 1.35 ms. These results were achieved in fibers with holmium concentration lower than 800 molar ppm and Al/Ho molar ratio greater than 70. Significant differences between fibers prepared by solution doping and nanoparticle doping were not observed. The behavior of Al 2 O 3 nanoparticles during fiber preparation is discussed in details.
Ensuring self-driven mode-locking and broadband wavelength tuneability in all-fibre-integrated femtosecond laser sources enables a new level of their versatility and extends areas of their applications. Principle limitations for this are traditionally available ultrafast modulators and tuneability techniques. Here, we exploit Thulium-doped fibre to perform three roles in the cavity: laser gain, saturable absorber, and tuneability element via controlling its excitation level. We confirmed that Tm-doped fibre saturable absorption is defined by a reinforced quenching of Tm3+ pairs. As a result, we present both numerically and experimentally a highly stable sub-picosecond pulse generation with a ~90 nm tuneability range spanning from 1873 to 1962 nm via adjusting the cavity feedback. The maximum laser efficiency corresponds to 25% cavity feedback, enabling the highest output energy of 1 nJ in 600-fs solitons at 1877 nm. Overall, the presented laser system establishes a compact and straightforward approach for ultrafast generation, which can be translated to other fibre laser operation wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.