The global pledge to deliver 'a significant reduction in the current rate of biodiversity loss by 2010' is echoed in a number of regional and national level targets. There is broad consensus, however, that in the absence of conservation action, biodiversity will continue to be lost at a rate unprecedented in the recent era. Remarkably, we lack a basic system to measure progress towards these targets and, in particular, we lack standard measures of biodiversity and procedures to construct and assess summary statistics. Here, we develop a simple classification of biodiversity indicators to assist their development and clarify purpose. We use European birds, as example taxa, to show how robust indicators can be constructed and how they can be interpreted. We have developed statistical methods to calculate supranational, multi-species indices using population data from national annual breeding bird surveys in Europe. Skilled volunteers using standardized field methods undertake data collection where methods and survey designs differ slightly across countries. Survey plots tend to be widely distributed at a national level, covering many bird species and habitats with reasonable representation. National species' indices are calculated using log-linear regression, which allows for plot turnover. Supranational species' indices are constructed by combining the national species' indices weighted by national population sizes of each species. Supranational, multi-species indicators are calculated by averaging the resulting indices. We show that common farmland birds in Europe have declined steeply over the last two decades, whereas woodland birds have not. Evidence elsewhere shows that the main driver of farmland bird declines is increased agricultural intensification. We argue that the farmland bird indicator is a useful surrogate for trends in other elements of biodiversity in this habitat.
24Biodiversity is undergoing unprecedented global decline. Efforts to slow this rate 25 have focused foremost on rarer species, which are at most risk of extinction. 26Less interest has been paid to more common species, despite their greater 27
Rapid climatic change poses a threat to global biodiversity. There is extensive evidence that recent climatic change has affected animal and plant populations, but no indicators exist that summarise impacts over many species and large areas. We use data on long-term population trends of European birds to develop such an indicator. We find a significant relationship between interspecific variation in population trend and the change in potential range extent between the late 20th and late 21st centuries, forecasted by climatic envelope models. Our indicator measures divergence in population trend between bird species predicted by climatic envelope models to be favourably affected by climatic change and those adversely affected. The indicator shows a rapid increase in the past twenty years, coinciding with a period of rapid warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.