Since the pioneering proposal of the replicon model of DNA replication 50 years ago, the predicted replicons have not been identified and quantified at the cellular level. Here, we combine conventional and super-resolution microscopy of replication sites in live and fixed cells with computational image analysis. We complement these data with genome size measurements, comprehensive analysis of S-phase dynamics and quantification of replication fork speed and replicon size in human and mouse cells. These multidimensional analyses demonstrate that replication foci (RFi) in three-dimensional (3D) preserved somatic mammalian cells can be optically resolved down to single replicons throughout S-phase. This challenges the conventional interpretation of nuclear RFi as replication factories, that is, the complex entities that process multiple clustered replicons. Accordingly, 3D genome organization and duplication can be now followed within the chromatin context at the level of individual replicons.
In DNA replication, the leading strand is synthesized continuously, but lagging strand synthesis requires the complex, discontinuous synthesis of Okazaki fragments, and their subsequent joining. We have used a combination of in situ extraction and dual color photobleaching to compare the dynamic properties of three proteins essential for lagging strand synthesis: the polymerase clamp proliferating cell nuclear antigen (PCNA) and two proteins that bind to it, DNA Ligase I and Fen1. All three proteins are localized at replication foci (RF), but in contrast to PCNA, Ligase and Fen1 were readily extracted. Dual photobleaching combined with time overlays revealed a rapid exchange of Ligase and Fen1 at RF, which is consistent with de novo loading at every Okazaki fragment, while the slow recovery of PCNA mostly occurred at adjacent, newly assembled RF. These data indicate that PCNA works as a stationary loading platform that is reused for multiple Okazaki fragments, while PCNA binding proteins only transiently associate and are not stable components of the replication machinery.
DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses.
The hypodactylous (hd) locus impairs limb development and spermatogenesis, leading to male infertility in rats. We show that the hd mutation is caused by an insertion of an endogenous retrovirus into intron 10 of the Cntrob gene. The retroviral insertion in hd mutant rats disrupts the normal splicing of Cntrob transcripts and results in the expression of a truncated protein. During the final phase of spermiogenesis, centrobin localizes to the manchette, centrosome, and the marginal ring of the spermatid acroplaxome, where it interacts with keratin 5-containing intermediate filaments. Mutant spermatids show a defective acroplaxome marginal ring and separation of the centrosome from its normal attachment site of the nucleus. This separation correlates with a disruption of head-tail coupling apparatus, leading to spermatid decapitation during the final step of spermiogenesis and the absence of sperm in the epididymis. Cntrob may represent a novel candidate gene for presently unexplained hereditary forms of teratozoospermia and the "easily decapitated sperm syndrome" in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.